Skip to main content
Log in

Sub-exponential tail bounds for conditioned stable Bienaymé–Galton–Watson trees

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We establish uniform sub-exponential tail bounds for the width, height and maximal outdegree of critical Bienaymé–Galton–Watson trees conditioned on having a large fixed size, whose offspring distribution belongs to the domain of attraction of a stable law. This extends results obtained for the height and width by Addario-Berry, Devroye and Janson in the finite variance case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Addario-Berry, L.: Tail bounds for the height and width of a random tree with a given degree sequence. Random Struct. Algorithms 41, 253–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Addario-Berry, L., Devroye, L., Janson, S.: Sub-Gaussian tail bounds for the width and height of conditioned Galton-Watson trees. Ann. Probab. 41, 1072–1087 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertoin, J.: Lévy Processes, vol. 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  4. Bertoin, J.: On the maximal offspring in a critical branching process with infinite variance. J. Appl. Probab. 48, 576–582 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertoin, J.: On largest offspring in a critical branching process with finite variance. J. Appl. Probab. 50, 791–800 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhamidi, S., van der Hofstad, R., Sen, S.: The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs. Preprint available on arxiv, arXiv:1508.04645

  7. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, vol. 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  8. Björnberg, J.E., Stefánsson, S.Ö.: Random walk on random infinite looptrees. J. Stat. Phys. 158, 1234–1261 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Broutin, N., Marckert, J.-F.: Asymptotics of trees with a prescribed degree sequence and applications. Random Struct. Algorithms 44, 290–316 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaumont, L.: Excursion normalisée, méandre et pont pour les processus de Lévy stables. Bull. Sci. Math. 121, 377–403 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Croydon, D., Kumagai, T.: Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive. Electron. J. Probab. 13(51), 1419–1441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Curien, N., Haas, B., Kortchemski, I.: The CRT is the scaling limit of random dissections. Random Struct. Algorithms 47, 304–327 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Curien, N., Kortchemski, I.: Random non-crossing plane configurations: a conditioned Galton-Watson tree approach. Random Struct. Algorithms 45, 236–260 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Curien, N., Kortchemski, I.: Random stable looptrees. Electron. J. Probab. 19(108), 35 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Curien, N., Kortchemski, I.: Percolation on random triangulations and stable looptrees. Probab. Theory Relat. Fields 163, 303–337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deutsch, E., Noy, M.: Statistics on non-crossing trees. Discrete Math. 254, 75–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duplantier, B., Miller, J., Sheffield, S.: Liouville quantum gravity as a mating of trees. Preprint available on arxiv, arXiv:1409.7055

  18. Duquesne, T.: A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31, 996–1027 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duquesne, T., Wang, M.: Decomposition of Lévy trees along their diameter. To appear in Ann. Inst. H. Poincaré Probab. Statist

  20. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. John Wiley & Sons Inc., New York (1971)

    MATH  Google Scholar 

  21. Haas, B., Miermont, G.: Scaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees. Ann. Probab. 40, 2589–2666 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ibragimov, I.A., Linnik, Y.V.: Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen (1971). With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman

  23. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, vol. 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer-Verlag, Berlin (2003)

    Google Scholar 

  24. Janson, S.: Random cutting and records in deterministic and random trees. Random Struct. Algorithms 29, 139–179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Janson, S.: Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Probab. Surv. 9, 103–252 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kersting, G.: On the Height Profile of a Conditioned Galton-Watson Tree. Unpublished manuscript

  27. Kesten, H.: Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Stat. 22, 425–487 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Kingman, J.F.C.: Uses of exchangeability. Ann. Probab. 6, 183–197 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kortchemski, I.: Invariance principles for Galton-Watson trees conditioned on the number of leaves. Stoch. Process. Appl. 122, 3126–3172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kortchemski, I.: A simple proof of Duquesne’s theorem on contour processes of conditioned Galton-Watson trees. In: Séminaire de Probabilités XLV, vol. 2078 of Lecture Notes in Math., pp. 537–558. Springer, Cham (2013)

  31. Kortchemski, I., Marzouk, C.: Triangulating stable laminations. Electron. J. Probab. 21(11), 1–31 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Le Gall, J.-F.: Random trees and applications. Probability Surveys (2005)

  33. Le Gall, J.-F., Le Jan, Y.: Branching processes in Lévy processes: the exploration process. Ann. Probab. 26, 213–252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Le Gall, J.-F., Miermont, G.: Scaling limits of random planar maps with large faces. Ann. Probab. 39, 1–69 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of \({L}\) log \({L}\) criteria for mean behavior of branching processes. Ann. Probab. 23, 1125–1138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marckert, J.-F., Panholzer, A.: Noncrossing trees are almost conditioned Galton-Watson trees. Random Struct. Algorithms 20, 115–125 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pakes, A.G.: Some new limit theorems for the critical branching process allowing immigration. Stoch. Process. Appl. 4, 175–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pakes, A.G.: Extreme order statistics on Galton-Watson trees. Metrika 47, 95–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Panagiotou, K., Stufler, B., Weller, K.: Scaling Limits of Random Graphs from Subcritical Classes. To appear in Ann. Probab

  40. Pitman, J.: Combinatorial Stochastic Processes, vol. 1875 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2006). Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7-24, 2002, With a foreword by Jean Picard

  41. Rahimov, I., Yanev, G.P.: On maximum family size in branching processes. J. Appl. Probab. 36, 632–643 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ray, G.: Large unicellular maps in high genus. Ann. Inst. Henri Poincaré Probab. Stat. 51, 1432–1456 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Seneta, E.: Regularly Varying Functions. Springer-Verlag, Berlin (1976)

    Book  MATH  Google Scholar 

  44. Slack, R.S.: A branching process with mean one and possibly infinite variance. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9, 139–145 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stufler, B.: Random enriched trees with applications to random graphs. Preprint available on arxiv, arXiv:1504.02006

  46. Vatutin, V.A., Wachtel, V., Vitalihtel, Fleishcmann, K.: Critical Galton-Watson branching processes: the maximum of the total number of particles within a large window. Teor. Veroyatn. Primen. 52, 419–445 (2007)

    Article  MathSciNet  Google Scholar 

  47. Whitt, W.: Stochastic-process limits, Springer Series in Operations Research. Springer-Verlag, New York (2002). An introduction to stochastic-process limits and their application to queues

  48. Zolotarev, V.M.: One-dimensional stable distributions, vol. 65 of Translations of Mathematical Monographs, vol. 65. American Mathematical Society, Providence, RI (1986). Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver

Download references

Acknowledgments

The author is grateful to Louigi Addario-Berry and to Svante Janson for stimulating discussions, as well as to an anonymous referee for her or his extremely careful reading and many comments that greatly improved the paper, and would like to thank the Newton Institute, where this work was finalized, for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kortchemski.

Additional information

The author acknowledges partial support from Agence Nationale de la Recherche, Grant Number ANR-14-CE25-0014 (ANR GRAAL), and from the City of Paris, Grant “Emergences Paris 2013, Combinatoire à Paris”.

Appendix

Appendix

In this appendix, we prove several useful results concerning the asymptotic behavior of Laplace transforms of critical offspring distributions belonging to domains of attractions of stable laws and of their associated size-biased distributions. As before, assume that \(\mu \) is a critical offspring distribution belonging to the domain of attraction of a stable law of index \(\alpha \in (1,2]\). Let \(\sigma ^{2} \in (0,\infty ]\) be the variance of \(\mu \) and let X is a random variable with law \(\mu \). Recall from the Introduction that L is a slowly varying function such that \(\text {Var}(X \cdot {\mathbbm {1}}_{X \leqslant n})= n^{2-\alpha } L(n)\). Note that \(L(n) \rightarrow \sigma ^{2}\) when \(\sigma ^{2}<\infty \), and that \(L(n) \rightarrow \infty \) when \(\sigma ^{2}=\infty \) and \(\alpha =2\). Hence, if X is a random variable with law \(\mu \), we have

$$\begin{aligned} {\mathbb {E}}\left[ X^{2} {\mathbbm {1}}_{X \leqslant n}\right] \quad \mathop {\sim }_{n \rightarrow \infty } \quad n^{2-\alpha } L(n) +1. \end{aligned}$$

since \({\mathbb {E}}\left[ X {\mathbbm {1}}_{X \leqslant n}\right] \rightarrow 1\) as \(n \rightarrow \infty \). The term “\(+1\)” is not negligible only when \(\sigma ^{2}<\infty \) (in which case \(\alpha =2\)).

Offspring distributions. Set \(G(s)= \sum _{i \geqslant 0} \mu (i) s^{i}\) for \(0 \leqslant s \leqslant 1\). Then by e.g. [8, Lemma 4.7]

$$\begin{aligned} G(s)-s \quad \mathop {\sim }_{s \uparrow 1} \quad \frac{\Gamma (3-\alpha )}{\alpha (\alpha -1)} \cdot (1-s)^{\alpha } L( (1-s)^{-1}). \end{aligned}$$
(41)

We stress that this holds in the both cases \(\sigma ^{2}<\infty \) and \(\sigma ^{2}=\infty \).

Also, if W is a random variable with distribution \( {\mathbb {P}}\left( W=i\right) = \mu (i+1)\) for \(i \geqslant -1\), since \( {\mathbb {E}}\left[ e^{-\lambda W}\right] = e^{\lambda }G(e^{-\lambda })\) for \(\lambda >0\), we have

$$\begin{aligned} {\mathbb {E}}\left[ e^{-\lambda W}\right] -1 \quad \mathop {\sim }_{\lambda \downarrow 0} \quad \frac{\Gamma (3-\alpha )}{\alpha (\alpha -1)} \cdot \lambda ^{\alpha } L(1/\lambda ). \end{aligned}$$
(42)

Again, this holds in the both cases \(\sigma ^{2}<\infty \) and \(\sigma ^{2}=\infty \).

Size-biased offspring distributions. Let \( {\mu }^{*}\) be the so-called size-biased probability distribution on \( \mathbb {Z}_{+}\) defined by \( {\mu }^{*}(i)=i\mu (i)\) for \(i \geqslant 0\). Note that \( {\mu }^{*}\) is indeed a probability distribution since \(\mu \) is critical. Let \(X^{*}\) be a random variable having law \(\mu ^{*}\). When \(\mu \) has finite variance, we claim that

$$\begin{aligned} 1-{\mathbb {E}}\left[ s^{X^{*}}\right] \quad \mathop {\sim }_{s \uparrow 1} \quad (1-s)(\sigma ^{2}+1), \end{aligned}$$
(43)

and when \(\mu \) has infinite variance, we claim that

$$\begin{aligned}&1-{\mathbb {E}}\left[ s^{X^{*}}\right] \,\, \mathop {\sim }_{s \uparrow 1} \,\, \frac{\Gamma (3-\alpha )}{\alpha -1} \cdot (1-s)^{\alpha -1} L((1-s)^{-1}),\nonumber \\&\qquad 1- {\mathbb {E}}\left[ e^{-\lambda {X}^{*}}\right] \,\,\mathop {\sim }_{\lambda \downarrow 0} \,\, \frac{\Gamma (3-\alpha )}{\alpha -1} \cdot \lambda ^{\alpha -1} L(1/\lambda ). \end{aligned}$$
(44)

When \(\mu \) has finite variance the claim (43) simply follows from the fact that \({\mathbb {E}}\left[ X^{*}\right] =\sigma ^{2}+1\).

Now assume that \(\mu \) has infinite variance. Then there exists a slowly varying function \(L_{1}\) such that \({\mathbb {P}}\left( X \geqslant n\right) = \mu ([n,\infty ))=L_{1}(n)/n^{\alpha }\) (see [20, Corollary XVII.5.2 and (5.16)]) when \(\alpha <2\), we have \(L_{1}(n)= \frac{2-\alpha }{\alpha } L(n)\), and \(L_{1}(n)/L(n) \rightarrow 0\) as \(n \rightarrow \infty \) when \(\alpha =2\). As a consequence, \(\mu ^{*}\) belongs to the domain of attraction of a stable law of index \(\alpha -1\), because

$$\begin{aligned} {\mu }^{*}([n,\infty )) \quad \mathop {\sim }_{n \rightarrow \infty } \quad \frac{\alpha }{\alpha -1} \cdot \frac{L_{1}(n)}{n^{\alpha -1}} \end{aligned}$$
(45)

since we can write \( {\mu }^{*}([n,\infty )) = (n-1) {\mu }([n,\infty )+ \sum _{j=n}^{\infty } \mu ([j,\infty ))\).

If \(\alpha <2\), (45) and [20, Corollary XVII.5.2 and (5.16)] give that

$$\begin{aligned} {\mathbb {E}}\left[ (X^*)^{2} {\mathbbm {1}}_{X^{*} \leqslant n}\right] \quad \mathop {\sim }_{n \rightarrow \infty } \quad n^{3-\alpha } \cdot \frac{2-\alpha }{3-\alpha } L(n), \end{aligned}$$

and (44) result follows e.g. by [8, Lemma 4.6].

Now assume that \(\alpha =2\) and set \(q^{*}_{i}= {\mathbb {P}}\left( X^{*} > i\right) \) for \(i \geqslant 0\). Then

$$\begin{aligned} \sum _{i=0}^{n}q^{*}_{i}= {\mathbb {E}}\left[ X^{2} {\mathbbm {1}}_{X \leqslant n}\right] + (n+1) \mu ^{*}([n+1,\infty )) \quad \mathop {\sim }_{n \rightarrow \infty } \quad L(n). \end{aligned}$$

Indeed, we know that \(L_{1}(n)/L(n) \rightarrow 0\) as \(n \rightarrow \infty \). Hence, by [20, Theorem XIII.5.5], we have \( \sum _{i=0}^{\infty }q^{*}_{i} s^{i} \sim L((1-s)^{-1})\) as \(s \uparrow 1\). Then

$$\begin{aligned} 1-{\mathbb {E}}\left[ s^{X^{*}}\right] =(1-s) \sum _{i=0}^{\infty }q^{*}_{i} s^{i} \quad \mathop {\sim }_{s \uparrow 1} \quad (1-s)L((1-s)^{-1}). \end{aligned}$$

Our claim (44) then follows by taking \(s=e^{-\lambda }\).

Finally, from (43) and (44) it is a simple matter to see that the estimates

$$\begin{aligned}&1-{\mathbb {E}}\left[ s^{X^{*}-1}\right] \, \mathop {\sim }_{s \uparrow 1} \, \frac{\Gamma (3-\alpha )}{\alpha -1} \cdot (1-s)^{\alpha -1} L((1-s)^{-1}),\nonumber \\&\qquad 1- {\mathbb {E}}\left[ e^{-\lambda ({X}^{*}-1) } \right] \,\mathop {\sim }_{\lambda \downarrow 0} \, \frac{\Gamma (3-\alpha )}{\alpha -1} \cdot \lambda ^{\alpha -1} L(1/\lambda ) \end{aligned}$$
(46)

hold in both the cases \(\sigma ^{2}<\infty \) and \(\sigma ^{2}=\infty \) (when \(\mu \) has infinite variance and \(\alpha =2\) we use the fact that \(L(n) \rightarrow \infty \) as \(n \rightarrow \infty \)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kortchemski, I. Sub-exponential tail bounds for conditioned stable Bienaymé–Galton–Watson trees. Probab. Theory Relat. Fields 168, 1–40 (2017). https://doi.org/10.1007/s00440-016-0704-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0704-6

Keywords

Mathematics Subject Classification

Navigation