Skip to main content
Log in

Metastability of the Ising model on random regular graphs at zero temperature

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the metastability of the ferromagnetic Ising model on a random r-regular graph in the zero temperature limit. We prove that in the presence of a small positive external field the time that it takes to go from the all minus state to the all plus state behaves like \({\exp (\beta (r/2+ {\mathcal {O}}(\sqrt{r}))n)}\) when the inverse temperature \(\beta \rightarrow \infty \) and the number of vertices n is large enough but fixed. The proof is based on the so-called pathwise approach and bounds on the isoperimetric number of random regular graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N.: On the edge-expansion of graphs. Combin Probab Comp 6(2), 145–152 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basak, A., Dembo, A.: Ferromagnetic Ising measures on large locally tree-like graphs. Preprint. arXiv:1205.4749 (2012)

  3. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140(6), 1065–1114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beltrán, J., Landim, C.: Metastability of reversible finite state Markov processes. Stoch. Proc. Appl. 121, 1633–1677 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beltrán, J., Landim, C.: A martingale approach to metastability. Prob. Theory Rel. Fields 161(1), 267–307 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. G, Ben Arous, Cerf, R.: Metastability of the three dimensional Ising model on a torus at very low temperatures. Elect. J. Prob. 1, 10 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Bollobás, B.: The isoperimetric number of random regular graphs. Euro. J. Comb. 9(3), 241–244 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in stochastic dynamics of disordered mean-field models. Prob. Theory Rel. Fields 119(1), 99–161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228(2), 219–255 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bovier, A., Manzo, F.: Metastability in Glauber dynamics in the low-temperature limit: beyond exponential asymptotics. J. Stat. Phys. 107(3–4), 757–779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cassandro, M., Galves, A., Olivieri, E., Vares, M.E.: Metastable behavior of stochastic dynamics: a pathwise approach. J. Stat. Phys. 35(5–6), 603–634 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, H., Li, S., Hou, Z., He, G., Huang, F., Shen, C.: How does degree heterogeneity affect nucleation on complex networks? J. Stat. Mech. Theory Exp. 2013, P09014 (2013)

    Google Scholar 

  13. Chen, H., Shen, C., Hou, Z., Xin, H.: Nucleation in scale-free networks. Phys. Rev. E 83, 031110 (2011)

    Article  Google Scholar 

  14. Cirillo, E.N.M., Nardi, F.R.: Relaxation height in energy landscapes: an application to multiple metastable states. J. Stat. Phys. 150(6), 1080–1114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Sanctis, L., Guerra, F.: Mean field dilute ferromagnet: high temperature and zero temperature behavior. J. Stat. Phys. 132, 759–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dembo, A., Montanari, A.: Ising models on locally tree-like graphs. Ann. Appl. Prob. 20(2), 565–592 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dommers, S., Giardinà, C., van der Hofstad, R.: Ising models on power-law random graphs. J. Stat. Phys. 141(4), 638–660 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dommers, S., Giardinà, C., van der Hofstad, R.: Ising critical exponents on random trees and graphs. Commun. Math. Phys. 328(1), 355–395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. den Hollander, F., Nardi, F.R., Olivieri, E., Scoppola, E.: Droplet growth for three-dimensional Kawasaki dynamics. Prob. Theory Rel. Fields 125, 153–194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. den Hollander, F., Olivieri, E., Scoppola, E.: Metastability and nucleation for conservative dynamics. J. Math. Phys. 41(3), 1424–1498 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ising, E.: Beitrag zur Theorie des Ferro- und Paramagnetismus. PhD Thesis, University of Hamburg (1924)

  22. Kotecký, R., Olivieri, E.: Droplet dynamics for asymmetric Ising model. J. Stat. Phys. 70(5), 1121–1148 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liggett, T.M.: Inter. Part. Syst. Springer, Berlin (1985)

    Book  Google Scholar 

  24. Kotecký, R., Olivieri, E.: Shapes of growing droplets—a model of escape from a metastable phase. J.Stat. Phys. 75(3), 409–506 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lubetzky, E., Sly, A.: Universality of cutoff for the Ising model. Preprint. arXiv:1407.1761 (2014)

  26. Manzo, F., Nardi, F.R., Olivieri, E., Scoppola, E.: On the essential features of metastability: tunnelling time and critical configurations. J. Stat. Phys. 115(1–2), 591–642 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Montanari, A., Mossel, E., Sly, A.: The weak limit of Ising models on locally tree-like graphs. Prob. Theory Rel. Fields 152, 31–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mossel, E., Sly, A.: Rapid mixing of Gibbs sampling on graphs that are sparse on average. Random Struct. Algor. 35(2), 250–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mossel, E., Sly, A.: Exact thresholds for Ising-Gibbs samplers on general graphs. Ann. Prob. 41(1), 294–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Neves, E.J., Schonmann, R.H.: Critical droplets and metastability for a Glauber dynamics at very low temperatures. Commun. Math. Phys. 137(2), 209–230 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Niss, M.: History of the Lenz-Ising model 1920–1950: from ferromagnetic to cooperative phenomena. Arch. History Exact Sci. 59(3), 267–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Niss, M.: History of the Lenz-Ising Model 1950–1965: from irrelevance to relevance. Arch. History Exact Sci. 63(3), 243–287 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Niss, M.: History of the Lenz-Ising Model 1965–1971: the role of a simple model in understanding critical phenomena. Arch History Exact Sci. 65(6), 625–658 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Olivieri, E., Scoppola, E.: Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case. J. Stat. Phys. 79(3), 613–647 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Olivieri, E., Vares, M.E.: Large Deviations and Metastability. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  37. Schonmann, R.H.: The pattern of escape from metastability of a stochastic Ising model. Commun. Math. Phys. 147(2), 231–240 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schonmann, R.H., Shlosman, S.B.: Wulff droplets and the metastable relaxation of kinetic Ising models. Commun. Math. Phys. 192, 389–462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, C., Chen, H., Ye, M., Hou, Z.: Nucleation pathways on complex networks. Chaos 23, 013112 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks Alessandra Bianchi and Francesca Collet for useful discussions on metastability. He also thanks Oliver Jovanovski for his suggestion how to improve Lemma 4.3 which also improved the main result and the anonymous referee for suggesting many useful improvements. This research has been partially supported by Futuro in Ricerca 2010 (Grant No. RBFR10N90W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander Dommers.

Appendix: Metastable time

Appendix: Metastable time

In this appendix, we prove a sequence of lemmas that together give the proof of Proposition 2.4. In fact, we show that the probabilities converge exponentially or even super-exponentially fast as \(\beta \rightarrow \infty \).

We prove the lower bound on the hitting time of \(\boxplus \) separately for the process starting in \(\boxminus \) and in a metastable state \(\eta \):

Lemma 5.1

If Condition (1) holds, then, for all \(\varepsilon >0\), \(\delta \in (0,\varepsilon )\) and sufficiently large \(\beta \),

$$\begin{aligned} {\mathbb {P}}_\boxminus \left[ \tau _\boxplus >e^{\beta (\Gamma _\ell -\varepsilon )}\right] \ge 1-e^{-\beta \delta }. \end{aligned}$$
(5.1)

Proof

To prove this lemma we need to introduce some terminology from [26]. For a non-empty set of configurations \({\mathcal {A}}\) denote by \(\partial ^\mathrm{ext}{\mathcal {A}}\) the external boundary of \({\mathcal {A}}\), i.e.,

$$\begin{aligned} \partial ^\mathrm{ext}{\mathcal {A}} = \left\{ \sigma ^B \notin {\mathcal {A}} : |A\triangle B|=1 \mathrm{\ for\ some\ }\sigma ^A \in {\mathcal {A}} \right\} . \end{aligned}$$
(5.2)

We define a non-trivial cycle as a connected set of configurations \({\mathcal {C}}\) such that

$$\begin{aligned} \max _{\sigma \in {\mathcal {C}}} H(\sigma ) < \min _{\eta \in \partial ^\mathrm{ext}{\mathcal {C}}} H(\eta ). \end{aligned}$$
(5.3)

The depth \(D({\mathcal {C}})\) of a non-trivial cycle \({\mathcal {C}}\) is defined as

$$\begin{aligned} D({\mathcal {C}}) = \min _{\eta \in \partial ^\mathrm{ext}{\mathcal {C}}} H(\eta ) - \min _{\sigma \in {\mathcal {C}}} H(\sigma ). \end{aligned}$$
(5.4)

We consider the cycle

$$\begin{aligned} {\mathcal {C}} = \left\{ \sigma : \Phi (\boxminus ,\sigma ) - H(\boxminus ) < \Gamma _\ell \right\} . \end{aligned}$$
(5.5)

From the definition of the communication height it follows that for any \(\sigma \in {\mathcal {C}}\) it holds that \(H(\sigma ) < \Gamma _\ell +H(\boxminus )\) and for any configuration \(\eta \in \partial ^\mathrm{ext}{\mathcal {C}}\) it holds that \(\eta \notin {\mathcal {C}}\) and hence \(H(\eta ) \ge \Gamma _\ell +H(\boxminus )\). Hence, \({\mathcal {C}}\) is a non-trivial cycle.

We can thus use [26, Theorem 2.17] to conclude that, for any \(\sigma \in {\mathcal {C}}\), \(\varepsilon >0\), \(\delta \in (0,\varepsilon )\) and sufficiently large \(\beta \),

$$\begin{aligned} {\mathbb {P}}_\sigma \left[ \tau _{\partial ^\mathrm{ext}{\mathcal {C}}}>e^{\beta (D-\varepsilon )}\right] \ge 1-e^{-\beta \delta }, \end{aligned}$$
(5.6)

where

$$\begin{aligned} D= D({\mathcal {C}}) = \min _{\eta \in \partial ^\mathrm{ext}{\mathcal {C}}} H(\eta ) - \min _{\sigma \in {\mathcal {C}}} H(\sigma ) \ge \Gamma _\ell +H(\boxminus )-H(\boxminus )=\Gamma _\ell . \end{aligned}$$
(5.7)

Clearly, \(\boxminus \in {\mathcal {C}}\), but \(\boxplus \notin {\mathcal {C}}\) by Condition (1). Hence if the process starts from \(\boxminus \) then \(\tau _\boxplus \ge \tau _{\partial ^\mathrm{ext}{\mathcal {C}}}\). Hence,

$$\begin{aligned} {\mathbb {P}}_\boxminus \left[ \tau _{\boxplus }>e^{\beta (\Gamma _\ell -\varepsilon )}\right]\ge & {} {\mathbb {P}}_\boxminus \left[ \tau _{\partial ^\mathrm{ext}{\mathcal {C}}}>e^{\beta (\Gamma _\ell -\varepsilon )}\right] \nonumber \\\ge & {} {\mathbb {P}}_\boxminus \left[ \tau _{\partial ^\mathrm{ext}{\mathcal {C}}}>e^{\beta (D-\varepsilon )}\right] \ge 1-e^{-\beta \delta }. \end{aligned}$$
(5.8)

\(\square \)

The lower bound on the metastable time for the process starting from a metastable state is given in the next lemma:

Lemma 5.2

If \(\eta \) is a metastable configuration and Condition (1) holds, then

$$\begin{aligned} \Gamma = V_\eta \ge \Gamma _\ell , \end{aligned}$$
(5.9)

and for all \(\varepsilon >0\), there exists a constant K such that for all sufficiently large \(\beta \)

$$\begin{aligned} {\mathbb {P}}_\eta \left[ \tau _\boxplus >e^{\beta (\Gamma _\ell -\varepsilon )}\right] \ge 1-e^{-K\beta }. \end{aligned}$$
(5.10)

Proof

We prove this lemma using the same reasoning as in the proof of [14, Theorem 2.4]. Suppose that Condition (1) holds, and assume that \(\Gamma <\Gamma _\ell \). Then it holds that \(V_\sigma <\Gamma _\ell \) for all configurations \(\sigma \ne \boxplus \). Hence, if we start with configuration \(\sigma _0=\boxminus \), we can find a state \(\sigma _1\) such that \(H(\sigma _1)<H(\sigma _0)\) and \(\Phi (\sigma _0,\sigma _1)-H(\sigma _0)<\Gamma _\ell \), i.e., there exists a path \(\omega _0\) from \(\sigma _0\) to \(\sigma _1\) such that

$$\begin{aligned} \max _{\sigma '\in \omega _0} H(\sigma ') <\Gamma _\ell + H(\sigma _0). \end{aligned}$$
(5.11)

As long as the new configuration with lower energy is not equal to \(\boxplus \), we can repeat this argument and find configurations \(\sigma _2, \sigma _3, \ldots , \sigma _n\) such that \(H(\sigma _0)>H(\sigma _1)>H(\sigma _2)>\cdots >H(\sigma _n)\) and \(\Phi (\sigma _i,\sigma _{i+1})-H(\sigma _i)<\Gamma _\ell \) for all \(i=0,2,\ldots ,n-1\), i.e, there exist paths \(\omega _i\) so that

$$\begin{aligned} \max _{\sigma '\in \omega _i} H(\sigma ') <\Gamma _\ell + H(\sigma _i). \end{aligned}$$
(5.12)

Since the number of configurations is finite and the energy is strictly decreasing every step, if we choose n large enough we will end in the configuration \(\sigma _n=\boxplus \). If we let \(\omega \) be the concatenation of the paths \(\omega _0,\omega _1,\ldots ,\omega _n\), then \(\omega \) is a path from \(\boxminus \) to \(\boxplus \) and

$$\begin{aligned} \max _{\sigma '\in \omega } H(\sigma ') = \max _{0\le i<n} \max _{\sigma '\in \omega _i} H(\sigma ')<\Gamma _\ell + \max _{0\le i<n}H(\sigma _i) = \Gamma _\ell + H(\boxminus ). \end{aligned}$$
(5.13)

Hence,

$$\begin{aligned} \Phi (\boxminus ,\boxplus ) - H(\boxminus ) < \Gamma _\ell , \end{aligned}$$
(5.14)

which is in contradiction with Condition (1).

So, if Condition (1) holds, then \(\Gamma \ge \Gamma _\ell \). Since, \(\eta \) is assumed to be a metastable state \(V_\eta =\Gamma \ge \Gamma _\ell \). The second statement of the lemma now immediately follows from [26, Theorem 4.1].\(\square \)

The upper bound on the metastable time is proved in the next lemma. Here, a function \(f(\beta )\) is called super-exponentially small (SES), denoted by \(f(\beta )=\mathrm{SES}\), if

$$\begin{aligned} \lim _{\beta \rightarrow \infty } \frac{1}{\beta }\log f(\beta )=-\infty . \end{aligned}$$
(5.15)

Lemma 5.3

(Upper bound on the metastable time) If Conditions (2) and (3a) hold, then, for all \(\varepsilon >0\),

$$\begin{aligned} \sup _{\sigma } {\mathbb {P}}_\sigma \left[ \tau _\boxplus >e^{\beta (\Gamma _u+\varepsilon )}\right] = \mathrm{SES}. \end{aligned}$$
(5.16)

Proof

Let

$$\begin{aligned} K_V=\{\sigma : V_\sigma > V\}, \end{aligned}$$
(5.17)

be the so-called metastable set at level V. If we set \(V=\Gamma _u\), then it follows from Conditions (2) and (3a) that \(V_\sigma \le V\) for all \(\sigma \ne \boxplus \). Hence, \(K_{\Gamma _u} = \{\boxplus \}\), since \(V_\boxplus =\infty \). It thus follows from [26, Theorem 3.1] that, for all \(\varepsilon >0\),

$$\begin{aligned} \sup _{\sigma }{\mathbb {P}}_\sigma \left[ \tau _\boxplus >e^{\beta (\Gamma _u+\varepsilon )}\right] = \textsc {SES}. \end{aligned}$$
(5.18)

\(\square \)

Because of the supremum, the same bound on the hitting time of \(\boxplus \) holds for the process starting from any state \(\sigma \) and in particular for the process starting in \(\boxminus \) and in any metastable state \(\eta \).

We finally characterize when \(\boxminus \) is the unique metastable state:

Lemma 5.4

If Conditions (1) and (3b) hold, then \(\boxminus \) is the unique metastable state.

Proof

We want to prove that \(V_\boxminus \ge \Gamma _\ell \), since then

$$\begin{aligned} \{\boxminus \} = {{\mathrm{arg\,max}}}_{\sigma \ne \boxplus } V_\sigma . \end{aligned}$$
(5.19)

Suppose that on the contrary \(V_\boxminus < \Gamma _\ell \). From Condition (3b) it follows that also \(V_\sigma <\Gamma _\ell \) for all \(\sigma \notin \{\boxminus ,\boxplus \}\). Then, by the same reasoning as in Lemma 5.2, we can find a path \(\omega \) from \(\boxminus \) to \(\boxplus \) such that

$$\begin{aligned} \max _{\sigma '\in \omega } H(\sigma ') <\Gamma _\ell + H(\boxminus ), \end{aligned}$$
(5.20)

and hence that

$$\begin{aligned} \Phi (\boxminus ,\boxplus )- H(\boxminus ) < \Gamma _\ell , \end{aligned}$$
(5.21)

which is in contradiction with Condition (1). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dommers, S. Metastability of the Ising model on random regular graphs at zero temperature. Probab. Theory Relat. Fields 167, 305–324 (2017). https://doi.org/10.1007/s00440-015-0682-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-015-0682-0

Keywords

Mathematics Subject Classification

Navigation