Skip to main content
Log in

Exact packing measure of the range of \(\psi \)-Super Brownian motions

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We consider super processes whose spatial motion is the d-dimensional Brownian motion and whose branching mechanism \(\psi \) is critical or subcritical; such processes are called \(\psi \)-super Brownian motions. If \(d>2\varvec{\gamma }/(\varvec{\gamma }-1)\), where \(\varvec{\gamma }\in (1,2]\) is the lower index of \(\psi \) at \(\infty \), then the total range of the \(\psi \)-super Brownian motion has an exact packing measure whose gauge function is \(g(r) = (\log \log 1/r) / \varphi ^{-1} ( (1/r\log \log 1/r)^{2})\), where \(\varphi = \psi ^\prime \circ \psi ^{-1}\). More precisely, we show that the occupation measure of the \(\psi \)-super Brownian motion is the g-packing measure restricted to its total range, up to a deterministic multiplicative constant only depending on d and \(\psi \). This generalizes the main result of Duquesne (Ann Probab 37(6):2431–2458, 2009) that treats the quadratic branching case. For a wide class of \(\psi \), the constant \(2\varvec{\gamma }/(\varvec{\gamma }-1)\) is shown to be equal to the packing dimension of the total range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  2. Besicovitch, A.S.: A general form of the covering principle and relative differentiation of additive functions. Proc. Camb. Philos. Soc. 41, 103-110 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bingham, N.H.: Continuous branching processes and spectral positivity. Stochastic Process. Appl. 4, 217-242 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blumenthal, R.M., Getoor, R.K.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493-516 (1961)

    MathSciNet  MATH  Google Scholar 

  5. Bolthausen, E., Perkins, E., van der Vaart, A.: Lectures on Probability Theory and Statistics, Lecture Notes in Mathematics, vol. 1781. Springer, Berlin (2002) (lectures from the 29th Summer School on Probability Theory held in Saint-Flour, July 8-24, 1999, edited by Pierre Bernard)

  6. Dawson, D.A., Hochberg, K.J.: The carrying dimension of a stochastic measure diffusion. Ann. Probab. 7(4), 693-703 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dawson, D.A., Iscoe, I., Perkins, E.A.: Super-Brownian motion: path properties and hitting probabilities. Probab. Theory Related Fields 83(1-2), 135-205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dawson, D.A., Perkins, E.A.: Historical processes. Mem. Am. Math. Soc. 93(454), iv+179 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Delmas, J.-F.: Some properties of the range of the super-Brownian motion. Probab. Theory Related Fields 114(4), 505-547 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duquesne, T.: The packing measure of the range of super-Brownian motion. Ann. Probab. 37(6), 2431-2458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duquesne, T.: Packing and Hausdorff measures of stable trees.In: Lévy matters I, Lecture Notes in Mathematics, vol. 2001, pp. 93-136. Springer, Berlin (2010)

  12. Duquesne, T.: The exact packing measure of Lévy trees. Stochastic Process. Appl. 122, 968-1002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duquesne, T., Le Gall, J.-F.: Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002)

  14. Duquesne, T., Le Gall, J.-F.: Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131(4), 553-603 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duquesne, T., Le Gall, J.-F.: The Hausdorff measure of stable trees. ALEA Lat. Am. J Probab. Math. Stat. 1, 393-415 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Dynkin, E.B.: A probabilistic approach to one class of nonlinear differential equations. Probab. Theory Related Fields 89(1), 89-115 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dynkin, E.B.: Diffusions, Superdiffusions and Partial Differential Equations, American Mathematical Society Colloquium Publications, vol. 50. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  18. Dynkin, E.B.: Superdiffusions and Positive Solutions of Nonlinear Partial Differential Equations, University Lecture Series, vol. 34. American Mathematical Society, Providence (2004) (Appendix A by J.-F. Le Gall and Appendix B by I. E. Verbitsky)

  19. Edgar, G.A.: Centered Densities and Fractal Measures. N. Y. J. Math. 13, 33-87 (2007, electronic)

  20. Etheridge, A.M.: An Introduction to Superprocesses, University Lecture Series, vol. 20, vol. 20. American Mathematical Society, Providence (2000)

    Google Scholar 

  21. Falconer, K.: Fractal Geometry. Wiley, Chichester (1990). (Mathematical foundations and applications)

    MATH  Google Scholar 

  22. Getoor, R.K.: The Brownian escape process. Ann. Probab. 7(5), 864-867 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hesse, M., Kyprianou, A.E.: The mass of super-Brownian motion upon exiting balls and Sheu’s compact support condition. Stochastic Process. Appl. 124(6), 2003-2022 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiřina, M.: Stochastic branching processes with continuous state space. Czech. Math. J. 8(83), 292-313 (1958)

    MathSciNet  MATH  Google Scholar 

  25. Keller, J.B.: On solutions of $\Delta u=f(u)$. Commun. Pure Appl. Math. 10, 503-510 (1957)

    Article  MATH  Google Scholar 

  26. Lamperti, J.: Continuous state branching processes. Bull. Am. Math. Soc. 73, 382-386 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lamperti, J.: The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7, 271-288 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  28. Le Gall, J.-F.: The Hausdorff measure of the range of super-Brownian motion. In: Perplexing Problems in Probability, Progr. Probab, vol. 44, pp. 285-314. Birkhäuser, Boston (1999)

  29. Le Gall, J.-F.: Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel (1999)

    Book  Google Scholar 

  30. Le Gall, J.-F., Le Jan, Y.: Branching processes in Lévy processes: the exploration process. Ann. Probab. 26(1), 213-252 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Le Gall, J.-F., Perkins, E.A.: The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23(4), 1719-1747 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Le Gall, J.-F., Perkins, E.A., Taylor, S.J.: The packing measure of the support of super-Brownian motion. Stochastic Process. Appl. 59(1), 1-20 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Z.: Measure-Valued Branching Markov Processes (New York). Probability and its Applications. Springer, Heidelberg (2011)

    Book  Google Scholar 

  34. Perkins, E.: A space-time property of a class of measure-valued branching diffusions. Trans. Am. Math. Soc. 305(2), 743-795 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Perkins, E.: The Hausdorff measure of the closed support of super-Brownian motion. Ann. Inst. H. Poincaré Probab. Stat. 25(2), 205-224 (1989)

    MathSciNet  MATH  Google Scholar 

  36. Pitman, J.W.: One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7(3), 511-526 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2004)

    Google Scholar 

  38. Sheu, Y.-C.: Asymptotic behavior of superprocesses. Stochastics Stochastics Rep. 49(3-4), 239-252 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Taylor, S.J., Tricot, C.: Packing measure, and its evaluation for a Brownian path. Trans. Am. Math. Soc. 288(2), 679-699 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We warmly thank J.-F. Delmas, E. Perkins and an anonymous referee for several comments that improved a first version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Duquesne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duhalde, X., Duquesne, T. Exact packing measure of the range of \(\psi \)-Super Brownian motions. Probab. Theory Relat. Fields 167, 201–252 (2017). https://doi.org/10.1007/s00440-015-0680-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-015-0680-2

Keywords

Mathematics Subject Classification

Navigation