Skip to main content

Advertisement

Log in

Personalized medicine: going to the dogs?

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achanta S, Maxwell L (2016) Reaction phenotyping of vinblastine metabolism in dogs. Vet Comp Oncol 14:161–169

    Article  CAS  PubMed  Google Scholar 

  • Achour B, Barber H, Rostami-Hodjegan A (2014) Expression of hepatic drug-metabolizing cytochrome P450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos 42:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Adami C, Axiak S, Raith K, Spadavecchia C (2012) Unusual perianesthetic malignant hyperthermia in a dog. J Am Vet Med Assoc 240:450–453

    Article  CAS  PubMed  Google Scholar 

  • Alvarellos M, Krauss R, Wilke R et al (2016) PharmGKB summary: very important pharmacogene information for RYR1. Pharmacogenet Genom 26:138–144

    Article  CAS  Google Scholar 

  • Aretz J, Geyer J (2011) Detection of the CYP1A2 1117C > T polymorphism in 14 dog breeds. J Vet Pharmacol Ther 34:98–100

    Article  CAS  PubMed  Google Scholar 

  • Bagshaw R, Cox R, Knight D, Detweiler D (1978) Malignant hyperthermia in a Greyhound. J Am Vet Med Assoc 172:61–62

    CAS  PubMed  Google Scholar 

  • Baker M, Parton T (2007) Kinetic determinants of hepatic clearance: plasma protein binding and hepatic uptake. Xenobiotica 37:1110–1134

    Article  CAS  PubMed  Google Scholar 

  • Benet L, Hoener B (2002) Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 71:115–121

    Article  CAS  PubMed  Google Scholar 

  • Birdwell K, Grady B, Choi L et al (2012) The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenet Genom 22:32–42

    Article  CAS  Google Scholar 

  • Blaisdell J, Goldstein JA, Bai SA (1998) Isolation of a new canine cytochrome P450 cDNA from the cytochrome P450 2C subfamily (CYP2C41) and evidence for polymorphic differences in its expression. Drug Metab Dispos 26:278–283

    CAS  PubMed  Google Scholar 

  • Bleasby K, Castle J, Roberts C et al (2006) Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 36:963–988

    Article  CAS  PubMed  Google Scholar 

  • Bohnert T, Gan L (2013) Plasma protein binding: from discovery to development. J Pharm Sci 102:2953–2994

    Article  CAS  PubMed  Google Scholar 

  • Burk O, Koch I, Raucy J et al (2004) The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR). J Biol Chem 279:38379–38385

    Article  CAS  PubMed  Google Scholar 

  • Cascorbi I (2006) Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 112:457–473

    Article  CAS  PubMed  Google Scholar 

  • Cascorbi I, Haenisch S (2010) Pharmacogenetics of ATP-binding cassette transporters and clinical implications. Methods Mol Biol 596:95–121

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Tran C, Xiao L et al (2009) Co-incubation of CYP3A12 and 3A26 in dog liver slices by xenobiotics: species differences between human and dog CYP3A induction. Drug Metab Lett 3:61–66

    Article  PubMed  Google Scholar 

  • Chohan A, Greene S (2011) Anesthesia case of the month. Malignant hyperthermia. J Am Vet Med Assoc 239:936–940

    Article  PubMed  Google Scholar 

  • Clinical Pharmacogenetics Implementation Consortium (2018) Genes-drugs. https://cpicpgx.org/genes-drugs/. Accessed 30 Nov 2018

  • Coelho J, Tucker R, Mattoon J et al (2009) Biliary excretion of technetium-99 m-sestamibi in wild-type dogs and in dogs with intrinsic (ABCB1-1Delta mutation) and extrinsic (ketoconazole treated) P-glycoprotein deficiency. J Vet Pharmacol Ther 32:417–421

    Article  CAS  PubMed  Google Scholar 

  • Cohen C (1978) Malignant hyperthermia in a greyhound. J Am Vet Med Assoc 172(1254):1256

    Google Scholar 

  • Court MH (2013) Canine cytochrome P450 (CYP) pharmacogenetics. Vet Clin North Am Small Anim Pract 43:1027–1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Court MH, Hay Kraus B, Hill DW et al (1999) Propofol hydroxylation by dog liver microsomes: assay development and dog breed differences. Drug Metab Dispos 27:1293–1299

    CAS  PubMed  Google Scholar 

  • Crews K, Gaedigk A, Dunnenberger H et al (2014) Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 95:376–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalgaard L (2015) Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 74:80–92

    Article  CAS  PubMed  Google Scholar 

  • Day M, Kraay G, Stevens R (1971) Polymorphism of canine serum albumin. Anim Blood Groups Biochem Genet 2:195–199

    Article  Google Scholar 

  • Dickinson P, Sullivan M (1994) Exercise induced hyperthermia in a racing greyhound. Vet Rec 135:508

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Kaminsky L (2003) Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol Toxicol 43:149–173

    Article  CAS  PubMed  Google Scholar 

  • Evans W (2004) Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 26:186–191

    Article  CAS  PubMed  Google Scholar 

  • Firdova Z, Turnova E, Bielikova M et al (2016) The prevalence of ABCB1:c.227_230delATAG mutation in affected dog breeds from European countries. Res Vet Sci 106:89–92

    Article  CAS  PubMed  Google Scholar 

  • Fraser D, Feyereisen R, Harlow G, Halpter J (1997) Isolation, heterologous expresion and functional characterization of a novel cytochrome P450 3A enzyme from a canine liver cDNA library. J Pharmacoly Exp Ther 283:1425–1432

    CAS  Google Scholar 

  • Ghuman J, Zunszain P, Petitpas I et al (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353:38–52

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Zhang C, Lv J et al (2017) Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy. Pharmacogenet Genom 27:337–346

    Article  CAS  Google Scholar 

  • Graham M, Bell A, Crewe K et al (2003) mRNA and protein expression of dog liver cytochromes P450 in relation to the metabolism of human CYP2C substrates. Xenobiotica 33:225–237

    Article  CAS  PubMed  Google Scholar 

  • Gramer I, Leidolf R, Döring B et al (2011) Breed distribution of the nt230(del4) MDR1 mutation in dogs. Vet J 189:67–71

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Dahl M (2008) Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 9:625–637

    Article  CAS  PubMed  Google Scholar 

  • Hay Kraus B, Greenblatt D, Venkatakrishnan K, Court MH (2000) Evidence for propofol hydroxylation by cytochrome P4502B11 in canine liver microsomes; breed and gender differences. Xenobiotica 30:575–588

    Article  CAS  PubMed  Google Scholar 

  • He X, Carter D (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  PubMed  Google Scholar 

  • Hedrich W, Hassan H, Wang H (2016) Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 6:413–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Heikkinen A, Friedlein A, Matondo M et al (2015) Quantitative ADME proteomics—CYP and UGT enzymes in the Beagle dog liver and intestine. Pharm Res 32:74–90

    Article  CAS  PubMed  Google Scholar 

  • Hernandez B, Adissu H, Wei B et al (2018) Naturally occurring canine melanoma as a predictive comparative oncology model for human mucosal and other triple wild-type melanomas. Int J Mol Sci 19:E394

    Article  CAS  PubMed  Google Scholar 

  • Heyes N, Kapoor P, Kerr I (2018) Polymorphisms of the multidrug pump ABCG2: a systematic review of their effect on protein expression, function, and drug pharmacokinetics. Drug Metab Dispos 46:1886–1899

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Takahashi M, Sudo K, Sugiyama Y (2009) Interindividual pharmacokinetics variability of the alpha(4)beta(1) integrin antagonist, 4-[1-[3-chloro-4-[N’-(2-methylphenyl)ureido]phenylacetyl]-(4S)-fluoro-(2S)-pyrrolidine-2-yl]methoxybenzoic acid (D01-4582), in beagles is associated with albumin gene. J Pharm Sci 98:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Jerram P (1985) Adverse reaction to ivermectin in a rough-coated Collie. N Z Vet J 33:216

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Dragin N, Jorge-Nebert L et al (2006) Search for an association between the human CYP1A2 genotype and CYP1A2 metabolic phenotype. Pharmacogenet Genom 16:359–367

    Article  CAS  Google Scholar 

  • Kaneko K, Fukuda H, Chuang V et al (2008) Subdomain IIIA of dog albumin contains a binding site similar to site II of human albumin. Drug Metab Dispos 36:81–86

    Article  CAS  PubMed  Google Scholar 

  • Kidd L, Salavaggione O, Szumlanski C et al (2004) Thiopurine methyltransferase activity in red blood cells of dogs. J Vet Intern Med 18:214–218

    Article  PubMed  Google Scholar 

  • Kirmayer A, Lkide A, Purvance J (1984) Malignant hyperthermia in a dog: case report and review of the syndrome. J Am Vet Med Assoc 185:978–982

    CAS  PubMed  Google Scholar 

  • Kosa T, Maruyama T, Otagiri M (1997) Species differences of serum albumins: I. Drug binding sites. Pharm Res 14:1607–1612

    CAS  PubMed  Google Scholar 

  • Kosa T, Nishi K, Maruyama T et al (2007) Structural and ligand-binding properties of serum albumin species interacting with a biomembrane interface. J Pharm Sci 96:3117–3124

    Article  CAS  PubMed  Google Scholar 

  • Leary S, Anderson L, Manning P et al (1983) Recurrent malignant hyperthermia in a Greyhound. J Am Vet Med Assoc 182:521–522

    CAS  PubMed  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819. https://doi.org/10.1038/nature04338

    Article  CAS  PubMed  Google Scholar 

  • Locuson C, Ethell B, Voice M et al (2009) Evaluation of Esherichia coli membrane preparations of canine CYP1A1, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 with coexpressed canine cytochrome P450 reductase. Drug Metab Dispos 37:457–461

    Article  CAS  PubMed  Google Scholar 

  • Locuson C, Williams P, Adcock J, Daniels J (2015) Evaluation of tizanidine as a marker of canine CYP1A2 activity. Vet Pharmacol Ther 39:122–130

    Article  CAS  Google Scholar 

  • London C (2009) Tyrosine kinase inhibitors in veterinary medicine. Top Companion Anim Med 24:106–112

    Article  PubMed  Google Scholar 

  • Ma Q, Lu A (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63:437–459

    Article  CAS  PubMed  Google Scholar 

  • Maran B, Mealey KL, Lahmers S et al (2013) Identification of DNA variants in the canine beta-1 adrenergic receptor gene. Res Vet Sci 95:238–240

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Antonovic L, Court M et al (2013) Challenges in exploring the cytochrome P450 system as a source of variation in canine drug pharmacokinetics. Drug Metab Rev 45:218–230

    Article  CAS  PubMed  Google Scholar 

  • Martinez MN, Court MH, Fink-Gremmels J, Mealey KL (2018) Population variability in animal health: influence on dose-exposure-response relationships: Part 1: drug metabolism and transporter systems. J Vet Pharmacol Ther 41:E57–E67

    Article  PubMed  Google Scholar 

  • Mealey KL (2004) Therapeutic implications of the MDR-1 gene. J Vet Pharmacol Ther 27:257–264

    Article  CAS  PubMed  Google Scholar 

  • Mealey KL (2008) Canine ABCB1 and macrocyclic lactones: heartworm prevention and pharmacogenetics. Vet Parasitol 158:215–222

    Article  CAS  PubMed  Google Scholar 

  • Mealey KL, Fidel J (2015) P-glycoprotein mediated drug interactions in animals and humans with cancer. J Vet Intern Med 29:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mealey KL, Meurs K (2008) Breed distribution of the ABCB1-1Delta (multidrug sensitivity) polymorphism among dogs undergoing ABCB1 genotyping. J Am Vet Med Assoc 233:921–924

    Article  PubMed  Google Scholar 

  • Mealey KL, Bentjen S, Gay J, Cantor G (2001) Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics 11:727–733

    Article  CAS  PubMed  Google Scholar 

  • Mealey KL, Fidel J, Gay J et al (2008a) ABCB1-1Delta polymorphism can predict hematologic toxicity in dogs treated with vincristine. J Vet Intern Med 22:996–1000

    Article  CAS  PubMed  Google Scholar 

  • Mealey KL, Greene S, Bagley R et al (2008b) P-glycoprotein contributes to the blood-brain, but not blood-cerebrospinal fluid, barrier in a spontaneous canine P-glycoprotein knockout model. Drug Metab Dispos 36:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Meurs K, Stern J, Reina-Doreste Y et al (2015) Impact of the canine double-deletion β1 adrenoreceptor polymorphisms on protein structure and heart rate response to atenolol, a β1-selective β-blocker. Pharmacogenet Genom 25:427–431

    Article  CAS  Google Scholar 

  • Mgheni M, Christensen K, Andresen E (1979) Albumin polymorphism in domestic dog breeds. Hereditas 91:307–308

    Google Scholar 

  • Miller D, Daly C, Aboelsaod E et al (2018) Genetic epidemiology of malignant hyperthermia in the UK. Br J Anaesth 121:944–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minchiotti L, Calliano M, Kragh-Hansen U, Peters TJ (2008) Mutations and polymorphisms of the gene of the major human blood protein, serum albumin. Hum Mutat 29:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Mise M, Hashizume T, Matsumoto S et al (2004a) Identification of non-functional allelic variant of CYP1A2 in dogs. Pharmacogenetics 14:769–773

    Article  CAS  PubMed  Google Scholar 

  • Mise M, Yadera S, Matsuda M et al (2004b) Polymorphic expression of CYP1A2 leading to interindividual variability in metabolism of a novel benzodiazepine receptor partial inverse agonist in dogs. Drug Metab Dispos 32:240–245

    Article  CAS  PubMed  Google Scholar 

  • Mise M, Hashizume T, Komuro S (2008) Characterization of substrate specificity of dog CYP1A2 using CYP1A2-deficient and wild-type dog liver microsomes. Drug Metab Dispos 36:1903–1908

    Article  CAS  PubMed  Google Scholar 

  • Monks N, Cherba D, Kamerling S et al (2013) A multi-site feasibility study for personalized medicine in canines with osteosarcoma. J Transl Med 11:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Monobe M, Junior J, Lunsford K et al (2015) Frequency of the MDR1 mutant allele associated with multidrug sensitivity in dogs from Brazil. Vet Med (Auckland, NZ) 6:111–117

    Google Scholar 

  • Moses L, Niemi S, Karlsson E (2018) Pet genomics medicine runs wild. Nature 559:470–472

    Article  CAS  PubMed  Google Scholar 

  • Neff MW, Robertson KR, Wong AK et al (2004) Breed distribution and history of canine mdr1-1Delta, a pharmacogenetic mutation that marks the emergence of breeds from the collie lineage. Proc Natl Acad Sci USA 101:11725–11730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson T (1991) Malignant hyperthermia in dogs. J Am Vet Med Assoc 198:989–994

    CAS  PubMed  Google Scholar 

  • O’Brien P, Cribb P, White R et al (1983) Canine malignant hyperthermia: diagnosis of susceptibility in a breeding colony. Can Vet J 24:172–177

    PubMed  PubMed Central  Google Scholar 

  • O’Brien P, Pook H, Klip A et al (1990) Canine stress syndrome/malignant hyperthermia susceptibility: calcium-homeostasis defect in muscle and lymphocytes. Res Vet Sci 48:124–128

    Article  PubMed  Google Scholar 

  • Otto K (1992) Malignant hyperthermia as a complication of anesthesia in the dog. Tierarztl Prax 20:519–522

    CAS  PubMed  Google Scholar 

  • Pandey AV, Sproll P (2014) Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol 5:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker HG, Dreger D, Rimbault M et al (2017) Genomic analyses reveal the influence of geographic organization, migration and hybridization on modern dog breed development. Cell Rep 19:697–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry H, Doney A, Palmer C, Lang C (2013) State of play of pharmacogenetics and personalized medicine in heart failure. Cardiovasc Ther 31:315–322

    Article  CAS  PubMed  Google Scholar 

  • Paulson S, Engel L, Reitz B et al (1999) Evidence for polymorphism in the canine metabolism of the cyclooxygenase 2 inhibitor, celecoxib. Drug Metab Dispos 27:1133–1142

    CAS  PubMed  Google Scholar 

  • Perez Jimenez T, Mealey K, Schnider D et al (2018) Identification of canine cytochrome P-450 s (CYPs) metabolizing the tramadol (+)-M1 and (+)-M2 metabolites to the tramadol (+)-M5 metabolite in dog liver microsomes. Vet Pharmacol Ther 41:815–824

    Article  CAS  Google Scholar 

  • Perez TE, Mealey KL, Grubb TL et al (2016) Tramadol metabolism to O-desmethyl tramadol (M1) and N-desmethyl tramadol (M2) by dog liver microsomes: species comparison and identification of responsible canine cytochrome P450s. Drug Metab Dispos 44:1963–1972

    Article  CAS  PubMed Central  Google Scholar 

  • Petersen C, Scottolini A, Cody L et al (1994) A point mutation in the human serum albumin gene results in familial dysalbuminaemic hyperthyroxinaemia. J Med Genet 31:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen C, Ha C, Mandel M, Bhagavan N (1995) Expression of a human serum albumin variant with high affinity for thyroxine. Biochem Biophys Res Commun 214:1121–1129

    Article  CAS  PubMed  Google Scholar 

  • Pharmacogene Variation Consortium (2018) PharmVar. In: PharmVar database 3.2. https://www.pharmvar.org/. Accessed 5 Dec 2018

  • Pistolozzi M, Bertucci C (2008) Species-dependent stereoselective drug binding to albumin: a circular dichroism study. Chirality 20:552–558

    Article  CAS  PubMed  Google Scholar 

  • Rand J, O’Brien P (1987) Exercise-induced malignant hyperthermia in an English springer spaniel. J Am Vet Med Assoc 190:1013–1014

    CAS  PubMed  Google Scholar 

  • Roberts M, Mickelson J, Patterson E et al (2001) Autosomal dominant canine malignant hyperthermia is caused by a mutation in the gene encoding the skeletal muscle calcium release channel (RYR1). Anesthesiology 95:716–725

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez D, Mackin A, Easley R et al (2004) Relationship between red blood cell thiopurine methyltransferase activity and myelotoxicity in dogs receiving azathioprine. J Vet Intern Med 18:339–345

    Article  PubMed  Google Scholar 

  • Rosenberg H, Pollock N, Schiemann A et al (2015) Malignant hyperthermia: a review. Orphanet J Rare Dis 10:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth M, Obaidat A, Hagenbuch B (2012) OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol 165:1260–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roussel F, Duignan D, Lawton M et al (1998) Expression and characterization of canine cytochrome P450 2D15. Arch Biochem Biophys 357:27–36

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Kirita S, Baba T et al (1995) A new cytochrome P450 form belonging to the CYP2D in dog liver microsomes: purification, cDNA cloning, and enzyme characterization. Arch Biochem Biophys 319:372–382

    Article  CAS  PubMed  Google Scholar 

  • Salavaggione O, Kidd L, Prondzinski J et al (2002) Canine red blood cell thiopurine S-methyltransferase: companion animal pharmacogenetics. Pharmacogenetics 12:713–724

    Article  CAS  PubMed  Google Scholar 

  • Sams R, Muir W (1988) Effects of phenobarbital on thiopental pharmacokinetics in greyhounds. Am J Vet Res 49:245–249

    CAS  PubMed  Google Scholar 

  • Sams R, Muir W, Detra R, Robinson E (1985) Comparative pharmacokinetics and anesthetic effects of methohexital, pentobarbital, thiamylal, and thiopental in Greyhound dogs and non-Greyhound, mixed-breed dogs. Am J Vet Res 46:1677–1683

    CAS  PubMed  Google Scholar 

  • Sawyer D (1981) Malignant hyperthermia. J Am Vet Med Assoc 179:341–344

    CAS  PubMed  Google Scholar 

  • Scherr M, Lourenço G, Albuquerque D, Lima C (2011) Polymorphism of cytochrome P450 A2 (CYP1A2) in pure and mixed breed dogs. J Vet Pharmacol Ther 34:184–186

    Article  CAS  PubMed  Google Scholar 

  • Schinkel A, Wagenaar E, van Deemter L et al (1995) Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 96:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Short C, Paddleford R (1973) Letter: malignant hyperthermia in the dog. Anesthesiology 39:462–463

    Article  CAS  PubMed  Google Scholar 

  • Shou M, Norcross R, Sandbig G et al (2003) Substrate specificity and kinetic properties of seven heterologously expressed dog cytochrome P450. Drug Metab Dispos 31:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Sparreboom A, Gelderblom H, Marsh S et al (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C > A genotype. Clin Pharmacol Ther 76:38–44

    Article  CAS  PubMed  Google Scholar 

  • Staatz C, Goodman L, Tett S (2010a) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacoknetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 49:141–175

    Article  CAS  PubMed  Google Scholar 

  • Staatz C, Goodman L, Tett S (2010b) Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacoknetics and pharmacodynamics of calcineurin inhibitors: part II. Clin Pharmacokinet 49:207–221

    Article  CAS  PubMed  Google Scholar 

  • Sudlow G, Birkett D, Wade D (1975) The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832

    CAS  PubMed  Google Scholar 

  • Sugio S, Kashima A, Mochizuki S et al (1999) Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng 12:439–446

    Article  CAS  PubMed  Google Scholar 

  • Sunthornthepvarakul T, Angkeow P, Weiss R et al (1994) An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun 202:781–787

    Article  CAS  PubMed  Google Scholar 

  • Tenmizu D, Endo Y, Noguchi K, Kaminura H (2004) Identification of the novel canine CYP1A2 1117 C > T SNP causing protein deletion. Xenobiotica 34:835–846

    Article  CAS  PubMed  Google Scholar 

  • Tenmizu D, Noguchi K, Kaminura H et al (2006a) The canine CYP1A2 deficiency polymorphism dramatically affects the pharmacokinetics of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]-pyrimidine-2-(1H)-one (YM-64227), a phosphodiesterase type 4 inhibitor. Drug Metab Dispos 34:800–806

    Article  CAS  PubMed  Google Scholar 

  • Tenmizu D, Noguchi K, Kaminura H (2006b) Elucidation of the effects of the CYP1A2 deficiency polymorphism in the metabolism of 4-cyclohexyl-1-ethyl-7-methylpyrido[2,3-d]pyrimidine-2-(1 h)-one (YM-64227), a phosphodiesterase type 4 inhibitor, and its metabolites in dogs. Drug Metab Dispos 34:1811–1816

    Article  CAS  PubMed  Google Scholar 

  • Thrift E, Wimpole J, Child G et al (2017) Exercise-induced hyperthermia syndrome (canine stress syndrome) in four related male English springer spaniels. Vet Med 8:59

    Google Scholar 

  • Uchida T, Komori M, Kitada M, Kamataki T (1990) Isolation of cDNAs coding for three diferent forms of liver microsomal cytochrome P-450 from polychlorinated biphenyl-treated Beagle dogs. Mol Pharmacol 38:644–651

    CAS  PubMed  Google Scholar 

  • U.S. Food & Drug Administration (2010) FDA Drug Safety Communication: Reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug. https://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm203888.htm. Accessed 10 Dec 2018

  • U.S. Food & Drug Administration (2018) Table of pharmacogenomic biomarkers in drug labeling. https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm. Accessed 31 Oct 2018

  • Von Richter O, Burk O, Fromm MF et al (2004) Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 14:172–183. https://doi.org/10.1016/j.clpt.2003.10.008

    Article  CAS  Google Scholar 

  • Wada N, Chiba H, Shimizu C et al (1997) A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab 82:3246–3250

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Pelleymounter L, Weinshilboum R et al (2010a) Very important pharmacogene summary: thiopurine S-methyltransferase. Pharmacogenet Genom 20:401–405

    Article  CAS  Google Scholar 

  • Wang P, Mao Y, Razo J et al (2010b) Using genetic and clinical factors to predict tacrolimus dose in renal transplant recipients. Pharmacogenomics 11:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Wu M, Maloneyhuss M et al (2017) Actionable mutations in canine hemangiosarcoma. PLoS One 12:e0188667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinshilboum R (2003) Inheritance and drug response. N Engl J Med 348:529–537

    Article  PubMed  Google Scholar 

  • Wenker A (2009) Genetic variations in the canine CYP2B11 gene: implications for veteirnary medicine?. Ultrecht University, Ultrecht

    Google Scholar 

  • Whirl-Carrillo M, McDonagh E, Hebert J et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417

    Article  CAS  PubMed  Google Scholar 

  • Whiterock V, Delmonte T, Hui L et al (2007) Frequency of CYP1A2 polymorphism in beagle dogs. Drug Metab Lett 1:163–165

    Article  CAS  PubMed  Google Scholar 

  • Whiterock V, Morgan D, Lentz K et al (2012) Phenacetin pharmacokinetics in CYP1A2-deficient beagle dogs. Drug Metab Dispos 40:228–231

    Article  CAS  PubMed  Google Scholar 

  • Williams J, Hyland R, Jones B et al (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Okomaku K, Kureishi M et al (2016) Artificial blood for dogs. Sci Rep 6:36782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaharieva I, Sarkozy A, Munot P et al (2018) STAC3 variants cause a congenital myopathy with distinctive dysmorphic features and malignant hyperthermia susceptibility. Hum Mutat 39:1980–1994

    Article  CAS  PubMed  Google Scholar 

  • Zanger UM, Klein K (2013) Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanger U, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activitites, and impact of genetic variation. Pharmacol Ther 138:103–141

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Wang B, Yang L, Liu J (2010) Structure, function, regulation, and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 38:1015–1018

    Article  CAS  Google Scholar 

  • Zoran D, Riedesel D, Dyer D (1993) Pharmacokinetics of propofol in mixed-breed dogs and greyhounds. Am J Vet Res 54:755–760

    CAS  PubMed  Google Scholar 

  • Zsila F, Bikadi Z, Malik D et al (2011) Evaluation of drug-human serum albumin binding interactions with support vector machine aided online automated docking. Bioinformatics 27:1806–1813

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SEM and MHC are supported by American Kennel Club Canine Health Foundation Grant 2529. MHC is also supported by the William R. Jones endowment to Washington State University College of Veterinary Medicine. KLM is supported by the Ott endowment to Washington State University. A gift from Wisdom Health has supported PrIMe research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina L. Mealey.

Ethics declarations

Conflict of interest

KLM receives royalties from Washington State University for MDR1 (ABCB1) genotyping patents. All the other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mealey, K.L., Martinez, S.E., Villarino, N.F. et al. Personalized medicine: going to the dogs?. Hum Genet 138, 467–481 (2019). https://doi.org/10.1007/s00439-019-02020-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-019-02020-w

Navigation