Skip to main content

Advertisement

Log in

Novel candidate genes and variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Identification of Mendelian genes for neurodevelopmental disorders using exome sequencing to study autosomal recessive (AR) consanguineous pedigrees has been highly successful. To identify causal variants for syndromic and non-syndromic intellectual disability (ID), exome sequencing was performed using DNA samples from 22 consanguineous Pakistani families with ARID, of which 21 have additional phenotypes including microcephaly. To aid in variant identification, homozygosity mapping and linkage analysis were performed. DNA samples from affected family member(s) from every pedigree underwent exome sequencing. Identified rare damaging exome variants were tested for co-segregation with ID using Sanger sequencing. For seven ARID families, variants were identified in genes not previously associated with ID, including: EI24, FXR1 and TET3 for which knockout mouse models have brain defects; and CACNG7 and TRAPPC10 where cell studies suggest roles in important neural pathways. For two families, the novel ARID genes CARNMT1 and GARNL3 lie within previously reported ID microdeletion regions. We also observed homozygous variants in two ID candidate genes, GRAMD1B and TBRG1, for which each has been previously reported in a single family. An additional 14 families have homozygous variants in established ID genes, of which 11 variants are novel. All ARID genes have increased expression in specific structures of the developing and adult human brain and 91% of the genes are differentially expressed in utero or during early childhood. The identification of novel ARID candidate genes and variants adds to the knowledge base that is required to further understand human brain function and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Amri A, Saegh AA, Al-Mamari W et al (2016) Homozygous single base deletion in TUSC3 causes intellectual disability with developmental delay in an Omani family. Am J Med Genet 170:1826–1831

    CAS  PubMed  Google Scholar 

  • Anazi S, Maddirevula S, Faqeih E et al (2017) Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry 22:615–624

    CAS  PubMed  Google Scholar 

  • Baglietto MG, Caridi G, Gimelli G et al (2014) RORB gene and 9q21.13 microdeletion: Report on a patient with epilepsy and mild intellectual disability. Eur J Med Genet 57:44–46

    PubMed  Google Scholar 

  • Bakker CE, de Diego Otero Y, Bontekoe C et al (2000) Immunocytochemical and biochemical characterization of FMRP, FXR1P, FXR2P in the mouse. Exp Cell Res 258:162–170

    CAS  PubMed  Google Scholar 

  • Bird TD (2016) Hereditary ataxia overview. In: Adam MP, Ardinger HH, Pagon RA et al (ed) GeneReviews [Internet]. University of Washington, Seattle, pp 1993–2018

    Google Scholar 

  • Boudry-Labis E, Demeer B, Le Caignec C et al (2013) A novel microdeletion syndrome at 9q21.13 characterised by mental retardation, speech delay, epilepsy and characteristic facial features. Eur J Med Genet 56:163–170

    PubMed  Google Scholar 

  • Breuer K, Foroushani AK, Laird MR et al (2013) InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res 41:D1228–D1233

    CAS  PubMed  Google Scholar 

  • Brunberg E, Jensen P, Isaksson A, Keeling LJ (2013) Brain gene expression differences are associated with abnormal tail biting behavior in pigs. Genes Brain Behav 12:275–281

    CAS  PubMed  Google Scholar 

  • Burns R, Majczenko K, Xu J et al (2014) Homozygous splice mutation in CWF19L1 in a Turkish family with recessive ataxia syndrome. Neurology 83:2175–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charng WL, Karaca E, Coban Akdemir Z et al (2016) Exome sequencing in mostly consanguineous Arab families with neurologic disease provides a high potential molecular diagnosis rate. BMC Med Genomics 9:42

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37:W305–W311

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Ligt J, Willemsen MH, van Bon BWM et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367:1921–1929

    PubMed  Google Scholar 

  • Del’Guidice T, Latapy C, Rampino A et al (2015) FXR1P is a GSK3β substrate regulating mood and emotion processing. Proc Natl Acad Sci USA 112:E4610–E4619

    PubMed  PubMed Central  Google Scholar 

  • Di Donato N, Jean YY, Maga AM et al (2016) Mutations in CRADD result in reduced caspase-2-mediated neuronal apoptosis and cause megalencephaly with a rare lissencephaly variant. Am J Hum Genet 99:1117–1129

    PubMed  PubMed Central  Google Scholar 

  • Drozak J, Piecuch M, Poleszak O et al (2015) UPF0586 protein C9orf41 homolog is anserine-producing methyltransferase. J Biol Chem 290:17190–17205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehret JK, Engels H, Cremer K et al (2015) Microdeletions in 9q33.3-q34.11 in five patients with intellectual disability, microcephaly, and seizures of incomplete penetrance: is STXBP1 not the only causative gene? Mol Cytogenet 8:72

    PubMed  PubMed Central  Google Scholar 

  • Evers C, Kaufmann L, Seitz A et al (2016) Exome sequencing reveals a novel CWF19L1 mutation associated with intellectual disability and cerebellar atrophy. Am J Med Genet A 170:1502–1509

    CAS  PubMed  Google Scholar 

  • Ewenczyk C, Leroux A, Roubergue A et al (2008) Recessive hereditary methaemoglobinaemia, type II: delineation of the clinical spectrum. Brain 131:760–761

    CAS  PubMed  Google Scholar 

  • Fama R, Sullivan EV (2015) Thalamic structures and associated cognitive functions: Relations with age and aging. Neurosci Biobehav Rev 54:29–37

    PubMed  PubMed Central  Google Scholar 

  • Ferron L, Davies A, Page KM et al (2008) The stargazing-related protein gamma 7 interacts with the mRNA-binding protein heterogeneous nuclear ribonucleoprotein A2 and regulates the stability of specific mRNAs, including CaV2.2. J Neurosci 28:10604–10607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garshasbi M, Hadavi V, Habibi H et al (2008) A defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am J Hum Genet 82:1158–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garshasbi M, Kahrizi K, Hosseini M et al (2011) A novel nonsense mutation in TUSC3 is responsible for non-syndromic autosomal recessive mental retardation in a consanguineous Iranian family. Am J Med Genet A 155A:1976–1980

    PubMed  Google Scholar 

  • Gudbjartsson DF, Thorvaldsson T, Kong A, Gunnarsson G, Ingolfsdottir A (2005) Allegro version 2. Nat Genet 37:1015–1016

    CAS  PubMed  Google Scholar 

  • Hahn MA, Qiu R, Wu X et al (2013) Dynamics of 5-hydroxymethylcytosine and chromatin marks in mammalian neurogenesis. Cell Rep 3:291–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harel T, Hacohen N, Shaag A et al (2017) Homozygous null variant in CRADD, encoding an adaptor protein that mediates apoptosis, is associated with lissencephaly. Am J Med Genet A 173:2539–2544

    CAS  PubMed  Google Scholar 

  • Harripaul R, Vasli N, Mikhailov A et al (2017) Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identified 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry 23:973–984

    PubMed  Google Scholar 

  • Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL et al (2012) An anatomically comprehensive atlas of the adult human transcriptome. Nature 489:391–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Kahrizi K, Musante L et al (2018) Genetics of intellectual disability in consanguineous families. Mol Psychiatry. https://doi.org/10.1038/s41380-017-0012-2

    Article  PubMed  PubMed Central  Google Scholar 

  • James SI, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP (2014) Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum. Transl Psychiatry 4:e460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Lv X, Lei X, Yang Y, Yang X, Jiao J (2016) Immune regulator MCPIP1 modulates TET expression during early neocortical development. Stem Cell Rep 7:1–15

    Google Scholar 

  • Jin SG, Zhang ZM, Dunwell TL et al (2016) Tet3 reads 5-carboxylcytosine through its CXXC domain and is a potential guardian against neurodegeneration. Cell Rep 14:493–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen A, Rosti RO, Musaey D et al (2016) Mutations in MBOAT7, encoding lysophosphatidylinositol acyltransferase I, lead to intellectual disability accompanied by epilepsy and autistic features. Am J Hum Genet 99:912–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kantarci S, Al-Gazali L, Hill RS et al (2007) Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai–Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 39:957–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalifa O, Al-Sahlawi Z, Imtiaz F et al (2015) Variable expression pattern in Donnai–Barrow syndrome: report of two novel LRP2 mutations and review of the literature. Eur J Med Genet 58:293–299

    PubMed  Google Scholar 

  • Khan MA, Rafiq MA, Noor A et al (2011) A novel deletion mutation in the TUSC3 gene in a consanguineous Pakistani family with autosomal recessive nonsyndromic intellectual disability. BMC Med Genet 12:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kochinke K, Zweier C, Nijhof B et al (2016) Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet 98:149–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kousar R, Nawaz H, Khurshid M et al (2010) Mutation analysis of the ASPM gene in 18 Pakistani families with autosomal recessive primary microcephaly. J Child Neurol 25:715–720

    PubMed  Google Scholar 

  • Kuhlenbäumer G, Young P, Oberwittler C et al (2002) Giant axonal neuropathy (GAN): case report and two novel mutations in the gigaxonin gene. Neurology 58:1273–1276

    PubMed  Google Scholar 

  • Kumari V, Gudjonsson GH, Raghuvanshi S et al (2013) Reduced thalamic volume in men with antisocial personality disorder or schizophrenia and a history of serious violence and childhood abuse. Eur Psychiatry 28:225–234

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wei W, Zhao QY et al (2014) Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc Natl Acad Sci USA 111:7120–7125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Yang D, Li J, Tang Y, Yang J, Le W (2015) Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation. Mol Neurobiol 51:142–154

    CAS  PubMed  Google Scholar 

  • Lise S, Clarkson Y, Perkins E et al (2012) Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development. PLoS Genet 8:e1003074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wu C, Li C, Boerwinkle E (2016) dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat 37:235–241

    PubMed  PubMed Central  Google Scholar 

  • Loddo S, Parisi V, Doccini V et al (2013) Homozygous deletion in TUSC3 causing syndromic intellectual disability: a new patient. Am J Med Genet A 161A:2084–2087

    PubMed  Google Scholar 

  • Lv X, Jiang H, Liu Y, Lei X, Jiao J (2014) MicroRNA-15b promotes neurogenesis and inhibits neural progenitor proliferation by directly repressing TET3 during early neocortical development. EMBO Rep 15:1305–1314

    PubMed  PubMed Central  Google Scholar 

  • Matise TC, Chen F, Chen W et al (2007) A second-generation combined linkage physical map of the human genome. Genome Res 17:1783–1786

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Megahed H, Nicouleau M, Barcia G et al (2016) Utility of whole exome sequencing for the early diagnosis of pediatric-onset cerebellar atrophy associated with developmental delay in an inbred population. Orphanet J Rare Dis 11:57

    PubMed  PubMed Central  Google Scholar 

  • Mientjes EJ, Willemsen R, Kirkpatrick LL et al (2004) FXR1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo. Hum Mol Genet 13:1291–1302

    CAS  PubMed  Google Scholar 

  • Miller JA, Ding SL, Sunkin SM et al (2014) Transcriptional landscape of the prenatal human brain. Nature 508:199–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mir A, Kaufman L, Noor A et al (2009) Identification of mutations in TRAPPC9, which encodes the NIK- and IKK-beta-binding protein, in nonsyndromic autosomal-recessive mental retardation. Am J Hum Genet 85:909–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida GH, Mahajnah M, Hill AD et al (2009) A truncating mutation of TRAPPC9 is associated with autosomal-recessive intellectual disability and postnatal microcephaly. Am J Hum Genet 85:897–902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monies D, Abouelhoda M, AlSayed M et al (2017) The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet 136:921–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moss FJ, Viard P, Davies A et al (2002) The novel product of a five-exon stargazing-related gene abolishes Cav2.2 calcium channel expression. EMBO J 21:1514–1523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Najmabadi H, Hu H, Garshasbi M et al (2011) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478:57–62

    CAS  PubMed  Google Scholar 

  • Neri I, Virdi A, Tortora G, Baldassari S, Seri M, Patrizi A (2016) Novel p.Glu519Gln missense mutation in ST14 in a patient with ichthyosis, follicular atrophoderma and hypotrichosis and review of the literature. J Dermatol Sci 81:63–66

    CAS  PubMed  Google Scholar 

  • Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng SB, Bigham AW, Buckingham KJ et al (2010) Exome sequencing identified MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen M, Boesten I, Hellebrekers DM et al (2016) Pathogenic CWF19L1 variants as a novel cause of autosomal recessive cerebellar ataxia and atrophy. Eur J Hum Genet 24:619–622

    CAS  PubMed  Google Scholar 

  • Novarino G, El-Fishawy P, Kayserili H et al (2012) Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 338:394–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Roak BJ, Deriziotis P, Lee C et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43:585–589

    PubMed  PubMed Central  Google Scholar 

  • Reed SM, Hagen J, Muniz VP et al (2014) NIAM-deficient mice are predisposed to the development of proliferative lesions including B-cell lymphomas. PLoS One 9:e112126

    PubMed  PubMed Central  Google Scholar 

  • Rehman AU, Santos-Cortez RLP, Drummond MC et al (2015) Challenges and solutions for gene identification in the presence of familial locus heterogeneity. Eur J Hum Genet 23:1207–1215

    CAS  PubMed  Google Scholar 

  • Reuter MS, Tawamie H, Buchert R et al (2017) Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiatry 74:293–299

    PubMed  Google Scholar 

  • Riazuddin S, Hussain M, Razzaq A et al (2017) Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Mol Psychiatry 22:1604–1614

    CAS  PubMed  Google Scholar 

  • Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424

    PubMed  PubMed Central  Google Scholar 

  • Riess S, Reddihough DS, Howell KB et al (2013) ALG3-CDG (CDG-Id): clinical, biochemical and molecular findings in two siblings. Mol Genet Metab 110:170–175

    CAS  PubMed  Google Scholar 

  • Rump P, Jazayeri O, van Dijk-Bos KK et al (2016) Whole-exome sequencing is a powerful approach for establishing the etiological diagnosis in patients with intellectual disability and microcephaly. BMC Med Genomics 9:7

    PubMed  PubMed Central  Google Scholar 

  • Sajid Hussain M, Marriam Bakhtiar S, Farooq M et al (2013) Genetic heterogeneity in Pakistani microcephaly families. Clin Genet 83:446–451

    CAS  PubMed  Google Scholar 

  • Salomons GS, Jakobs C, Pope LL et al (2007) Clinical, enzymatic and molecular characterization of nine new patients with malonyl-coenzyme A decarboxylase deficiency. J Inherit Metab Dis 30:23–28

    CAS  PubMed  Google Scholar 

  • Schnekenberg RP, Perkins EM, Miller JW et al (2015) De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 138:1817–1832

    Google Scholar 

  • Scott EM, Halees A, Itan Y et al (2016) Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nat Genet 48:1071–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seelow D, Schuelke M, Hildebrandt F, Nürnberg P (2009) HomozygosityMapper—an interactive approach to homozygosity mapping. Nucleic Acids Res 37:W593–W599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Gilmore EC, Marshall CA et al (2010) Mutations in the PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 42:245–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks SE, Krasnewich DM (2017) Congenital disorders of N-linked glycosylation and multiple pathway overview. In: Adam MP, Ardinger HH, Pagon RA et al (ed) GeneReviews [Internet]. University of Washington, Seattle, pp 1993–2018

    Google Scholar 

  • Srivastava S, Cohen JS, Vernon H et al (2014) Clinical whole exome sequencing in child neurology practice. Ann Neurol 76:473–483

    PubMed  Google Scholar 

  • Stepniak B, Kästner A, Poggi G et al (2015) Accumulated common variants in the broader fragile X gene family modulate autistic phenotypes. EMBO Mol Med 7:1565–1579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamanini F, Willemsen R, van Unen L et al (1997) Differential expression of FMR1, FXR1 and FXR2 proteins in human brain and testis. Hum Mol Genet 6:1315–1322

    CAS  PubMed  Google Scholar 

  • Tarailo-Graovac M, Shyr C, Ross CJ et al (2016) Exome sequencing and the management of neurometabolic disorders. N Engl J Med 374:2246–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tazir M, Nouioua S, Magy L et al (2009) Phenotypic variability in giant axonal neuropathy. Neuromuscul Disord 19:270–274

    PubMed  Google Scholar 

  • The GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585

    PubMed Central  Google Scholar 

  • Thevenon J, Duffourd Y, Masurel-Paulet A et al (2016) Diagnostic odyssey in severe neurodevelopmental disorders: towards clinical whole-exome sequencing as a first-line diagnostic test. Clin Genet 89:700–707

    CAS  PubMed  Google Scholar 

  • Tompkins VS, Hagen J, Frazier AA et al (2007) A novel nuclear interactor of ARF and MDM2 (NIAM) that maintains chromosomal instability. J Biol Chem 282:1322–1333

    CAS  PubMed  Google Scholar 

  • van Bokhoven H (2011) Genetic and epigenetic networks in intellectual disabilities. Annu Rev Genet 45:81–104

    PubMed  Google Scholar 

  • Vasli N, Ahmed I, Mittal K et al (2016) Identification of a homozygous missense mutation in LRP2 and a hemizygous missense mutation in TSPYL2 in a family with mild intellectual disability. Psychiatr Genet 26:66–73

    CAS  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    PubMed  PubMed Central  Google Scholar 

  • Wang R, Khan A, Han S, Zhang X (2017) Molecular analysis of 23 Pakistani families with autosomal recessive primary microcephaly using targeted next-generation sequencing. J Hum Genet 62:299–304

    CAS  PubMed  Google Scholar 

  • Xia J, Benner MJ, Hancock RE (2014) NetworkAnalyst—integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res 42:W167–W174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XL, Zong R, Li Z et al (2011) FXR1P but not FMRP regulates the levels of mammalian brain-specific microRNA-9 and microRNA-124. J Neurosci 31:13705–13709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yavarna T, Al-Dewik N, Al-Mureikhi M et al (2015) High diagnostic yield of clinical exome sequencing in Middle Eastern patients with Mendelian disorders. Hum Genet 134:967–980

    CAS  PubMed  Google Scholar 

  • Zhao YG, Zhao H, Miao L, Wang L, Sun F, Zhang H (2012) The p53-induced gene Ei24 is an essential component of the basal autophagy pathway. J Biol Chem 287:42053–42062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Dai J, Ma Y et al (2014) Dynamics of ten-eleven translocation hydroxylase family proteins and 5-hydroxymethylcytosine in oligodendrocyte differentiation. Glia 62:914–926

    PubMed  Google Scholar 

  • Zhu X. Girardo D, Govek EE et al (2016) Role of Tet1/3 genes and chromatin remodeling genes in cerebellar circuit formation. Neuron 89:100–112

    CAS  PubMed  Google Scholar 

  • Zong M, Wu X, Chan CWL et al (2011) The adaptor function of TRAPPC2 in mammalian TRAPPs explains TRAPPC2-associated SEDT and TRAPPC9-associated congenital intellectual disability. PLoS One 6:e23350

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the families who participated in this study. We also thank the following who provided genotyping and sequencing services at the University of Washington Center for Mendelian Genomics (UW-CMG): Michael J. Bamshad1,2, Suzanne M. Leal3, and Deborah A. Nickerson1; Peter Anderson1, Marcus Annable1, Elizabeth E. Blue1, Kati J. Buckingham1, Imen Chakchouk3, Jennifer Chin1, Jessica X Chong1, Rodolfo Cornejo Jr.1, Colleen P. Davis1, Christopher Frazar1, Martha Horike-Pyne1, Gail P. Jarvik1, Eric Johanson1, Ashley N. Kang1, Tom Kolar1, Stephanie A. Krauter1, Colby T. Marvin1, Sean McGee1, Daniel J. McGoldrick1, Karynne Patterson1, Sam W. Phillips1, Jessica Pijoan1, Matthew A. Richardson1, Peggy D. Robertson1, Isabelle Schrauwen3, Krystal Slattery1, Kathryn M. Shively1, Joshua D. Smith1, Monica Tackett1, Alice E. Tattersall1, Marc Wegener1, Jeffrey M. Weiss1, Marsha M. Wheeler1, Qian Yi1, and Di Zhang3; Affiliations—1University of Washington; 2Seattle Children’s Hospital; 3Baylor College of Medicine. UW-CMG was funded by the National Human Genome Research Institute and the National Heart, Lung and Blood Institute grant HG006493 (to D. Nickerson, M. Bamshad and S. Leal). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was supported by funds from the Higher Education Commission, Islamabad, Pakistan (to W. Ahmad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne M. Leal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 KB)

Supplementary material 2 (PNG 573 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Cortez, R.L.P., Khan, V., Khan, F.S. et al. Novel candidate genes and variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability. Hum Genet 137, 735–752 (2018). https://doi.org/10.1007/s00439-018-1928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-018-1928-6

Navigation