Skip to main content

Advertisement

Log in

Exploring homologous recombination repair and base excision repair pathway genes for possible diagnostic markers in hematologic malignancies

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Hematologic malignancies (HMs) are a collection of malignant transformations, originating from the cells in the bone marrow and lymphoid organs. HMs comprise three main types; leukemia, lymphoma, and multiple myeloma. Globally, HMS accounts for approximately 10% of newly diagnosed cancer. DNA repair pathways defend the cells from recurrent DNA damage. Defective DNA repair mechanisms such as homologous recombination repair (HRR), nucleotide excision repair (NER), and base excision repair (BER) pathways may lead to genomic instability, which initiates HM progression and carcinogenesis. Expression deregulation of HRR, NER, and BER has been investigated in various malignancies. However, no studies have been reported to assess the differential expression of selected DNA repair genes combinedly in HMs. The present study was designed to assess the differential expression of HRR and BER pathway genes including RAD51, XRCC2, XRCC3, APEX1, FEN1, PARP1, and XRCC1 in blood cancer patients to highlight their significance as diagnostic/ prognostic marker in hematological malignancies. The study cohort comprised of 210 blood cancer patients along with an equal number of controls. For expression analysis, q-RT PCR was performed. DNA damage was measured in blood cancer patients and controls using the comet assay and LORD Q-assay. Data analysis showed significant downregulation of selected genes in blood cancer patients compared to healthy controls. To check the diagnostic value of selected genes, the Area under curve (AUC) was calculated and 0.879 AUC was observed for RAD51 (p < 0.0001) and 0.830 (p < 0.0001) for APEX1. Kaplan–Meier analysis showed that downregulation of RAD51 (p < 0.0001), XRCC3 (p < 0.02), and APEX1 (p < 0.0001) was found to be associated with a significant decrease in survival of blood cancer patients. Cox regression analysis showed that deregulation of RAD51 (p < 0.0001), XRCC2 (p < 0.02), XRCC3 (p < 0.003), and APEX1 (p < 0.00001) was found to be associated with the poor prognosis of blood cancer patients. Comet assay showed an increased number of comets in blood cancer patients compared to controls. These results are confirmed by performing the LORD q-assay and an increased frequency of lesions/Kb was observed in selected genes in cancer patients compared to controls. Our results showed significant downregulation of RAD51, XRCC2, XRCC3, APEX1, FEN1, PARP1, and XRCC1 genes with increased DNA damage in blood cancer patients. The findings of the current research suggested that deregulated expression of HRR and BER pathway genes can act as a diagnostic/prognostic marker in hematologic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdel-Fatah TM, Russell R, Albarakati N, Maloney DJ, Dorjsuren D, Rueda OM, Moseley P, Mohan V, Sun H, Abbotts R, Mukherjee A (2014) Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer. Mol Oncol 8(7):1326–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Afzal H, Yousaf S, Rahman F, Ahmed MW, Akram Z, Kayani MA, Mahjabeen I. PARP1: A potential biomarker for gastric cancer (2019). Pathol Res Pract 21 (8) :152472.

  • Agostini M, Zangrando A, Pastrello C, D’Angelo E, Romano G, Giovannoni R, Giordan M, Maretto I, Bedin C, Zanon C, Digito M (2015) A functional biological network centered on XRCC3: a new possible marker of chemoradiotherapy resistance in rectal cancer patients. Cancer Biol Ther 16(8):1160–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali K, Mahjabeen I, Sabir M, Baig RM, Zafeer M, Faheem M, Kayani MA (2014) Germline variations of apurinic/apyrimidinic endonuclease 1 (APEX1) detected in female breast cancer patients. Asian Pac J Cancer Prev 15(18):7589–7595

    PubMed  Google Scholar 

  • Allera-Moreau C, Rouquette I, Lepage BA, Oumouhou N, Walschaerts M, Leconte E, Schilling V, Gordien K, Brouchet L, Delisle MB, Mazieres J (2012). DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients. Oncogenesis (10):e30-.

  • Ang MK, Patel MR, Yin XY, Sundaram S, Fritchie K, Zhao N, Liu Y, Freemerman AJ, Wilkerson MD, Walter V, Weissler MC (2011) High XRCC1 protein expression is associated with poorer survival in patients with head and neck squamous cell carcinoma. Clin Cancer Res 20:6542–6552

    Google Scholar 

  • Bajpai D, Banerjee A, Pathak S, Jain SK, Singh N (2013) Decreased expression of DNA repair genes (XRCC1, ERCC1, ERCC2, and ERCC4) in squamous intraepithelial lesion and invasive squamous cell carcinoma of the cervix. Mol Cell Biochem 377:45–53

    CAS  PubMed  Google Scholar 

  • Bashir N, Sana S, Mahjabeen I, Kayani MA (2014) Association of reduced XRCC2 expression with lymph node metastasis in breast cancer tissues. Fam Cancer 13:611–617

    CAS  PubMed  Google Scholar 

  • Bhattacharya S, Srinivasan K, Abdisalaam S, Su F, Raj P, Dozmorov I, Mishra R, Wakeland EK, Ghose S, Mukherjee S, Asaithamby A (2017) RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res 45(8):4590–4605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bieche I, Pennaneach V, Driouch K, Vacher S, Zaremba T, Susini A, Lidereau R, Hall J (2013) Variations in the mRNA expression of poly (ADP-ribose) polymerases, poly (ADP-ribose) glycohydrolase and ADP-ribosylhydrolase 3 in breast tumors and impact on clinical outcome. Int J Cancer 133(12):2791–2800

    CAS  PubMed  Google Scholar 

  • Bu D, Tomlinson G, Lewis CM, Zhang C, Kildebeck E, Euhus DM (2006) An intronic polymorphism associated with increased XRCC1 expression, reduced apoptosis and familial breast cancer. Breast Cancer Res Treat 99:257–265

    CAS  PubMed  Google Scholar 

  • Cheng Y, Yang B, Xi Y, Chen X (2016) RAD51B as a potential biomarker for early detection and poor prognostic evaluation contributes to tumorigenesis of gastric cancer. Tumor Biol 37(11):14969–14978

    CAS  Google Scholar 

  • Crnogorac-Jurcevic T, Efthimiou E, Nielsen T, Loader J, Terris B, Stamp G, Baron A, Scarpa A, Lemoine NR (2002) Expression profiling of microdissected pancreatic adenocarcinomas. Oncogene 21(29):4587–4594

    CAS  PubMed  Google Scholar 

  • Donizy P, Wu CL, Mull J, Fujimoto M, Chłopik A, Peng Y, Shalin SC, Selim MA, Puig S, Fernandez-Figueras MT, Shea CR (2020) Up-regulation of PARP1 expression significantly correlated with poor survival in mucosal melanomas. Cells 9(5):1135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilabert M, Launay S, Ginestier C, Bertucci F, Audebert S, Pophillat M, Toiron Y, Baudelet E, Finetti P, Noguchi T, Sobol H (2014) Poly (ADP-ribose) polymerase 1 (PARP1) overexpression in human breast cancer stem cells and resistance to Olaparib. PLoS ONE 9(8):e104302

    PubMed  PubMed Central  Google Scholar 

  • Green AR, Caracappa D, Benhasouna AA, Alshareeda A, Nolan CC, Macmillan RD, Madhusudan S, Ellis IO, Rakha EA (2015) Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res Treat 149:353–362

    CAS  PubMed  Google Scholar 

  • Hegan DC, Lu Y, Stachelek GC, Crosby ME, Bindra RS, Glazer PM (2010) Inhibition of poly (ADP-ribose) polymerase down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proc Natl Acad Sci 107(5):2201–2206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoya N, Miyagawa K (2014) Targeting DNA damage response in cancer therapy. Cancer Sci 105(4):370–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Wang N, Wang YJ (2013) XRCC3 and RAD51 expression are associated with clinical factors in breast cancer. PLoS ONE 8(8):e72104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Zhang Z, Zhao L, Li L, Zuo W, Han L (2019) High expression of RAD51 promotes DNA damage repair and survival in KRAS-mutant lung cancer cells. BMB Rep 52(2):151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, Van Heek NT, Rosty C, Walter K, Sato N, Parker A, Ashfaq R, Jaffee E (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162(4):1151–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jelinek J, Estecio MRH, Kondo K, He R, Zavadil J, & Issa JPJ (2015). Classifying Leukemias Based on Epigenetic Alterations. Blood, 110 (11). Retrieved from http://www.bloodjournal.org/content/110/11/2123

  • Jenkins G, O'Byrne KJ, Panizza B, Richard DJ (2013). Genome stability pathways in head and neck cancers. International journal of genomics 2013.

  • Jiao L, Hassan MM, Bondy ML, Wolff RA, Evans DB, Abbruzzese JL, Li D (2008) XRCC2 and XRCC3 gene polymorphism and risk of pancreatic cancer. The Am J Gastroenterol 103(2):360

    CAS  PubMed  Google Scholar 

  • Joshi D, Korgaonkar S, Shanmukhaiah C, Vundinti BR (2017) Down regulation of DNA repair genes Lig4, Ku70, Ku80, XRCC3 in primary myelodysplastic syndromes. Meta Gene 12:78–82

    Google Scholar 

  • Kelley MR, Cheng L, Foster R, Tritt R, Jiang J, Broshears J, Koch M (2001) Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Ape1/ref-1 in prostate cancer. Clin Cancer Res 7(4):824–830

    CAS  PubMed  Google Scholar 

  • Kikuchi K, Taniguchi Y, Hatanaka A, Sonoda E, Hochegger H, Adachi N, Matsuzaki Y, Koyama H, Van Gent DC, Jasin M, Takeda S (2005) Fen-1 facilitates homologous recombination by removing divergent sequences at DNA break ends. Mol Cell Biol 25(16):6948–6955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MH, Kim HB, Yoon SP, Lim SC, Cha MJ, Jeon YJ, Park SG, Chang IY, You HJ (2013) Colon cancer progression is driven by APEX1-mediated upregulation of Jagged. J Clin Investig 123(8):3211–3230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby TW, Gassman NR, Smith CE, Pedersen LC, Gabel SA, Sobhany M, Wilson SH, London RE (2015) Nuclear localization of the DNA repair scaffold XRCC1: uncovering the functional role of a bipartite NLS. Sci Rep 5(1):13405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS, Liu Y (2018) Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep 23(1):239–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krejci L, Altmannova V, Spirek M, Zhao X (2012) Homologous recombination and its regulation. Nucleic Acids Res 40(13):5795–5818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583

    PubMed  PubMed Central  Google Scholar 

  • Lam JS, Seligson DB, Yu H, Li A, Eeva M, Pantuck AJ, Zeng G, Horvath S, Belldegrun AS (2006) Flap endonuclease 1 is overexpressed in prostate cancer and is associated with a high Gleason score. BJU Int 98(2):445–451

    CAS  PubMed  Google Scholar 

  • Li LY, Guan YD, Chen XS, Yang JM, Cheng Y (2021) DNA repair pathways in cancer therapy and resistance. Front Pharmacol 11:629266

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang Y, Zhao Y, Gao D, Xing J, Liu H (2016) High PARP-1 expression is associated with tumor invasion and poor prognosis in gastric cancer. Oncol Lett 12(5):3825–3835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahjabeen I, Chen Z, Zhou X, Kayani MA (2012) Decreased mRNA expression levels of base excision repair (BER) pathway genes is associated with enhanced Ki-67 expression in HNSCC. Med Oncol 29:3620–3625

    CAS  PubMed  Google Scholar 

  • Mahjabeen I, Baig RM, Sabir M, Kayani MA (2013) Genetic and expressional variations of APEX1 are associated with increased risk of head and neck cancer. Mutagenesis 28(2):213–218

    CAS  PubMed  Google Scholar 

  • Mahjabeen I, Ali K, Zhou X, Kayani MA (2014) Deregulation of base excision repair gene expression and enhanced proliferation in head and neck squamous cell carcinoma. Tumor Biol 35:5971–5983

    CAS  Google Scholar 

  • Mittal RD, Mandal RK, Gangwar R (2012) Base excision repair pathway genes polymorphism in prostate and bladder cancer risk in North Indian population. Mech Ageing Dev 133(4):127–132

    CAS  PubMed  Google Scholar 

  • Nikolova T, Christmann M, Kaina B (2009) FEN1 is overexpressed in testis, lung and brain tumors. Anticancer Res 29(7):2453–2459

    CAS  PubMed  Google Scholar 

  • Nosho K, Yamamoto H, Mikami M, Taniguchi H, Takahashi T, Adachi Y, Imamura A, Imai K, Shinomura Y (2006) Overexpression of poly (ADP-ribose) polymerase-1 (PARP-1) in the early stage of colorectal carcinogenesis. Eur J Cancer 42(14):2374–2381

    CAS  PubMed  Google Scholar 

  • Ossovskaya V, Koo IC, Kaldjian EP, Alvares C, Sherman BM (2010) Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer 1(8):812–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei JS, Chang WS, Hsu PC, Chen CC, Cheng SP, Wang YC, Tsai CW, Shen TC, Bau DT (2018) The contribution of XRCC3 genotypes to childhood acute lymphoblastic leukemia. Cancer Manag Res 10:5677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng L, Liu Y, Chen J, Cheng M, Wu Y, Chen M, Zhong Y, Shen D, Chen L, Ye X (2022) APEX1 regulates alternative splicing of key tumorigenesis genes in non-small-cell lung cancer. BMC Medical Genom 15(1):1

    Google Scholar 

  • Poljsak B, Milisav I (2016) NAD+ as the link between oxidative stress, inflammation, caloric restriction, exercise, DNA repair, longevity, and health span. Rejuvenation Res 19(5):406–413. https://doi.org/10.1089/rej.2015.1767

    Article  CAS  PubMed  Google Scholar 

  • Qin CJ, Song XM, Chen ZH, Ren XQ, Xu KW, Jing H, He YL (2015) XRCC2 as a predictive biomarker for radioresistance in locally advanced rectal cancer patients undergoing preoperative radiotherapy. Oncotarget 6(31):32193

    PubMed  PubMed Central  Google Scholar 

  • Radivoyevitch T, Sachs RK, Gale RP, Smith MR, Hill BT (2016) Ionizing radiation exposures in treatments of solid neoplasms are not associated with subsequent increased risks of chronic lymphocytic leukemia. Leuk Res 43:9–12

    CAS  PubMed  Google Scholar 

  • Rio DC, Ares M, Hannon GJ, Nilsen TW (2010) Purification of RNA using TRI zol (TRI reagent). Cold Spring Harb Protoc. https://doi.org/10.1016/j.lungcan.2006.08.004

    Article  Google Scholar 

  • Ryk C, Kumar R, Thirumaran RK, Hou SM (2006) Polymorphisms in the DNA repair genes XRCC1, APEX1, XRCC3 and NBS1, and the risk for lung cancer in never-and ever-smokers. Lung Cancer 54(3):285–292

    PubMed  Google Scholar 

  • Saeed S, Mahjabeen I, Sarwar R, Bashir K, Kayani MA (2017) Haplotype analysis of XRCC2 gene polymorphisms and association with increased risk of head and neck cancer. Sci Rep 7(1):13210

    PubMed  PubMed Central  Google Scholar 

  • Sak SC, Harnden P, Johnston CF, Paul AB, Kiltie AE (2005) APE1 and XRCC1 protein expression levels predict cancer-specific survival following radical radiotherapy in bladder cancer. Clin Cancer Res 11(17):6205–6211

    CAS  PubMed  Google Scholar 

  • Santos JC, Funck A, Silva-Fernandes IJ, Rabenhorst SH, Martinez CA, Ribeiro ML (2014) Effect of APE1 T2197G (Asp148Glu) polymorphism on APE1, XRCC1, PARP1 and OGG1 expression in patients with colorectal cancer. Int J Mol Sci 15(10):17333–17343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Girard L, Sekine I, Sunaga N, Ramirez RD, Kamibayashi C, Minna JD (2003) Increased expression and no mutation of the flap endonuclease (FEN1) gene in human lung cancer. Oncogene 22(46):7243–7246

    CAS  PubMed  Google Scholar 

  • Schena M, Guarrera S, Buffoni L, Salvadori A, Voglino F, Allione A, Pecorari G, Ruffini E, Garzino-Demo P, Bustreo S, Consito L (2012) DNA repair gene expression level in peripheral blood and tumour tissue from non-small cell lung cancer and head and neck squamous cell cancer patients. DNA Repair 11(4):374–380

    CAS  PubMed  Google Scholar 

  • Schild D, Wiese C (2010) Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Nucleic Acids Res Spec Publ 38(4):1061–1070

    CAS  Google Scholar 

  • Singh P, Yang M, Dai H, Yu D, Huang Q, Tan W, Kernstine KH, Lin D, Shen B (2008) Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. Mol Cancer Res 6(11):1710–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith A, Howell D, Patmore R, Jack A, Roman E (2011) Incidence of haematological malignancy by sub-type: a report from the haematological malignancy research network. Br J Cancer 105(11):1684–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, He L, Wu H, Pan F, Wu X, Zhao J, Hu Z, Sekhar C, Li H, Zheng L, Chen H (2017) The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene 36(2):194–207

    CAS  PubMed  Google Scholar 

  • Tian H, Gao Z, Li H, Zhang B, Wang G, Zhang Q, Pei D, Zheng J (2015) DNA damage response–a double-edged sword in cancer prevention and cancer therapy. Cancer Lett 358(1):8–16

    CAS  PubMed  Google Scholar 

  • Trego KS, Groesser T, Davalos AR, Parplys AC, Zhao W, Nelson MR, Hlaing A, Shih B, Rydberg B, Pluth JM, Tsai MS (2016) Non-catalytic roles for XPG with BRCA1 and BRCA2 in Homologous recombination and genome stability. Mol Cell 61(4):535–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tung CL, Jian YJ, Chen JC, Wang TJ, Chen WC, Zheng HY, Chang PY, Liao KS, Lin YW (2016) Curcumin downregulates p38 MAPK-dependent X-ray repair cross-complement group 1 (XRCC1) expression to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Naunyn Schmiedebergs Arch Pharmacol 389:657–666

    CAS  PubMed  Google Scholar 

  • Wang P, Tang JT, Peng YS, Chen XY, Zhang YJ, Fang JY (2010) XRCC1 downregulated through promoter hypermethylation is involved in human gastric carcinogenesis. J Dig Dis 11(6):343–351

    CAS  PubMed  Google Scholar 

  • Wang S, Wu X, Chen Y, Zhang J, Ding J, Zhou Y, He S, Tan Y, Qiang F, Bai J, Zeng J (2012) Prognostic and predictive role of JWA and XRCC1 expressions in gastric CancerJWA and XRCC1 roles in gastric cancer. Clin Cancer Res 18(10):2987–2996

    CAS  PubMed  Google Scholar 

  • Wang J, Zhou L, Li Z, Zhang T, Liu W, Liu Z, Yuan YC, Su F, Xu L, Wang Y, Zhou X (2015) YY1 suppresses FEN1 over-expression and drug resistance in breast cancer. BMC Cancer 15(1):1–5

    Google Scholar 

  • Wiegmans AP, Al-Ejeh F, Chee N, Yap PY, Gorski JJ, Da Silva L, Bolderson E, Chenevix-Trench G, Anderson R, Simpson PT, Lakhani SR (2014) Rad51 supports triple negative breast cancer metastasis. Oncotarget 5(10):3261

    PubMed  PubMed Central  Google Scholar 

  • Xu K, Chen Z, Qin C, Song X (2014) miR-7 inhibits colorectal cancer cell proliferation and induces apoptosis by targeting XRCC2. OncoTargets Ther 20:325–332

    Google Scholar 

  • Xu K, Song X, Chen Z, Qin C, He Y, Zhan W (2014) XRCC2 promotes colorectal cancer cell growth, regulates cell cycle progression, and apoptosis. J Med 93(28):e296

    Google Scholar 

  • Yang J, Yang D, Cogdell D, Du X, Li H, Pang Y, Sun Y, Hu L, Sun B, Trent J, Chen K (2010) APEX1 gene amplification and its protein overexpression in osteosarcoma: correlation with recurrence, metastasis, and survival. Technol Cancer Res Treat 9(2):161–169

    CAS  PubMed  Google Scholar 

  • Yang M, Tian X, Fan Z, Yu W, Li Z, Zhou J, Zhang W, Liang A (2019) Targeting RAD51 enhances chemosensitivity of adult T-cell leukemia-lymphoma cells by reducing DNA double-strand break repair. Oncol Rep 42(6):2426–2434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa K, Ogawa T, Baer R, Hemmi H, Honda K, Yamauchi A, Inamoto T, Ko K, Yazumi S, Motoda H, Kodama H (2000) Abnormal expression of BRCA1 and BRCA1-interactive DNA-repair proteins in breast carcinomas. Int J Cancer Res 88(1):28–36

    CAS  Google Scholar 

  • Yousaf S, Khan AU, Akram Z, Kayani MA, Nadeem I, Begum B, Mahjabeen I (2019) Expression deregulation of DNA repair pathway genes in gastric cancer. Cancer Genet 237:39–50

    CAS  PubMed  Google Scholar 

  • Yu S, Song Z, Luo J, Dai Y, Li N (2011) Over-expression of RAD51 or RAD54 but not RAD51/4 enhances extra-chromosomal homologous recombination in the human sarcoma (HT-1080) cell line. J Biotechnol 154(1):21–24

    CAS  PubMed  Google Scholar 

  • Yuan C, Liu X, Yan S, Wang C, Kong B (2014) Analyzing association of the XRCC3 gene polymorphism with ovarian cancer risk. Biomed Res Int. https://doi.org/10.1155/2014/648137

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Ma N, Yao W, Li S, Ren Z (2019) RAD51 is a potential marker for prognosis and regulates cell proliferation in pancreatic cancer. Cancer Cell Int 19(1):1–1

    Google Scholar 

  • Zhao Z, He K, Zhang Y, Hua X, Feng M, Zhao Z, Sun Y, Jiang Y, Xia Q (2021) XRCC2 repairs mitochondrial DNA damage and fuels malignant behavior in hepatocellular carcinoma. Cancer Lett 512:1–4

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Higher Education Commission of Pakistan (HEC) and COMSATS University, Islamabad, provided financial and infrastructural support to the authors. The authors thank the patients and the personnel of the Pakistan Institute of Medical Sciences (PIMS) in Islamabad for their participation in study.

Funding

There was no specific grant for this research from any government, commercial or non-profit funding body.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors read and approved the final version of manuscript. SFA, NP and IQ collected and isolated the RNA samples. SFA, MFH, RS, NS and NSA performed the expression analysis study. IM and MFH performed statistical analyses of the data and draft of the manuscript. MAK and IM supervised the project and provided critical revisions. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ishrat Mahjabeen.

Ethics declarations

Conflict of interest

There are no competing interests for the study.

Additional information

Communicated by Shuhua Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, S.F., Mahjabeen, I., Parveen, N. et al. Exploring homologous recombination repair and base excision repair pathway genes for possible diagnostic markers in hematologic malignancies. Mol Genet Genomics 298, 1527–1543 (2023). https://doi.org/10.1007/s00438-023-02078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-023-02078-2

Keywords

Navigation