Skip to main content

Advertisement

Log in

Breast cancer stage prediction: a computational approach guided by transcriptome analysis

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Breast cancer is the second leading cancer among women in terms of mortality rate. In recent years, its incidence frequency has been continuously rising across the globe. In this context, the new therapeutic strategies to manage the deadly disease attracts tremendous research focus. However, finding new prognostic predictors to refine the selection of therapy for the various stages of breast cancer is an unattempted issue. Aberrant expression of genes at various stages of cancer progression can be studied to identify specific genes that play a critical role in cancer staging. Moreover, while many schemes for subtype prediction in breast cancer have been explored in the literature, stage-wise classification remains a challenge. These observations motivated the proposed two-phased method: stage-specific gene signature selection and stage classification. In the first phase, meta-analysis of gene expression data is conducted to identify stage-wise biomarkers that were then used in the second phase of cancer classification. From the analysis, 118, 12 and 4 genes respectively in stage I, stage II and stage III are determined as potential biomarkers. Pathway enrichment, gene network and literature analysis validate the significance of the identified genes in breast cancer. In this study, machine learning methods were combined with principal component and posterior probability analysis. Such a scheme offers a unique opportunity to build a meaningful model for predicting breast cancer staging. Among the machine learning models compared, Support Vector Machine (SVM) is found to perform the best for the selected datasets with an accuracy of 92.21% during test data evaluation. Perhaps, biomarker identification performed here for stage-specific cancer treatment would be a meaningful step towards predictive medicine. Significantly, the determination of correct cancer stage using the proposed 134 gene signature set can possibly act as potential target for breast cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All large-scale data used in this study were obtained from online data repositories and the manuscript provide clear information on how to access the data.

References

  • Agarwal R, Gonzalez-Angulo AM, Myhre S, Carey M, Lee JS, Overgaard J, Alsner J, Stemke-Hale K, Lluch A, Neve RM et al (2009) Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin Cancer Res 15(11):3654–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aibar S, Fontanillo C, Droste C, Roson-Burgo B, Campos-Laborie FJ, Hernandez-Rivas JM, De Las Rivas J (2015) Analyse multiple disease subtypes and build associated gene networks using genome-wide expression profiles. BMC Genom 16(S5):S3

    Article  Google Scholar 

  • Aleskandarany MA, Vandenberghe ME, Marchiò C, Ellis IO, Sapino A, Rakha EA (2018) Tumour heterogeneity of breast cancer: from morphology to personalised medicine. Pathobiology 85(1–2):23–34

    Article  PubMed  Google Scholar 

  • Beattie J, Hawsawi Y, Alkharobi H, El-Gendy R (2015) Igfbp-2 and- 5: important regulators of normal and neoplastic mammary gland physiology. J Cell Commun Signal 9(2):151–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Blows FM, Driver KE, Schmidt MK, Broeks A, Van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C et al (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7(5):e1000279

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet C, Ares M, Haussler D (1999) Support vector machine classification of microarray gene expression data. University of California, Santa Cruz

    Google Scholar 

  • Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Haussler D (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci 97(1):262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellana B, Escuin D, Peirò G, Garcia-Valdecasas B, Vázquez T, Pons C, Pérez-Olabarria M, Barnadas A, Lerma E (2012) Aspn and gjb2 are implicated in the mechanisms of invasion of ductal breast carcinomas. J Cancer 3:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Lin CJ (2011) Libsvm: a ibrary for support vector machines. ACM Transact Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  • Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14(5):1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  Google Scholar 

  • Debnath J (2011) The multifaceted roles of autophagy in tumors-implications for breast cancer. J Mammary Gland Biol Neoplasia 16(3):173

    Article  PubMed  PubMed Central  Google Scholar 

  • Dettogni RS, Stur E, Laus AC, da Costa Vieira RA, Marques MMC, Santana IVV, Pulido JZ, Ribeiro LF, de Jesus Parmanhani N, Agostini LP et al (2020) Potential biomarkers of ductal carcinoma in situ progression. BMC Cancer 20(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Sayed R, El Jamal L, El Iskandarani S, Kort J, Abdelsalam M, Assi HI (2019) Endocrine and targeted therapy for hormone-receptor-positive, her2-negative advanced breast cancer: seuencing treatment and overcoming resistance. Front Oncol 9:510

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B et al (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655

    Article  CAS  PubMed  Google Scholar 

  • Fang M, Yuan J, Peng C, Li Y (2014) Collagen as a double-edged sword in tumor progression. Tumor Biol 35(4):2871–2882

    Article  CAS  Google Scholar 

  • Gamberger D, Lavrač N, Železnỳ F, Tolar J (2004) Induction of comprehensible models for gene expression datasets by subgroup discovery methodology. J Biomed Inform 37(4):269–284

    Article  CAS  PubMed  Google Scholar 

  • Goebel C, Louden CL, McKenna R, Onugha O, Wachtel A, Long T (2019) Diagnosis of non-small cell lung cancer for early stage asymptomatic patients. Cancer Genom Proteom 16(4):229–244

    Article  CAS  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  CAS  PubMed  Google Scholar 

  • Güler EN (2017) Gene expression profiling in breast cancer and its effect on therapy selection in early-stage breast cancer. Eur J Breast Health 13(4):168

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamzeh O, Alkhateeb A, Zheng JZ, Kandalam S, Leung C, Atikukke G, Cavallo-Medved D, Palanisamy N, Rueda L (2019) A hierarchical machine learning model to discover gleason grade-specific biomarkers in prostate cancer. Diagnostics 9(4):219

    Article  CAS  PubMed Central  Google Scholar 

  • Hamzeh O, Alkhateeb A, Zheng J, Kandalam S, Rueda L (2020) Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data. BMC Bioinform 21(2):1–10

    Google Scholar 

  • Hanna M, Diorio C (2013) Does mammographic density reflect the expression of breast cancer markers? Climacteric 16(4):407–416

    Article  CAS  PubMed  Google Scholar 

  • Hens AB, Tiwari MK (2012) Computational time reduction for credit scoring: an integrated approach based on support vector machine and stratified sampling method. Expert Syst Appl 39(8):6774–6781

    Article  Google Scholar 

  • Heo KS (2019) Regulation of post-translational modification in breast cancer treatment. BMB Rep 52(2):113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Fan C, Oh DS, Marron J, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom 7(1):1–12

    Article  Google Scholar 

  • Jagga Z, Gupta D (2014) Classification models for clear cell renal carcinoma stage progression, based on tumor RNAseq expression trained supervised machine learning algorithms. BMC Proceedings, vol 8. Springer, Berlin, p S2

    Google Scholar 

  • Jena MK, Janjanam J (2018) Role of extracellular matrix in breast cancer development: a brief update. F1000Research. https://doi.org/10.12688/f1000research.14133.2

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong SB, Im JH, Yoon JH, Bui QT, Lim SC, Song JM, Shim Y, Yun J, Hong J, Kang KW (2018) Essential role of polo-like kinase 1 (plk1) oncogene in tumor growth and metastasis of tamoxifen-resistant breast cancer. Mol Cancer Ther 17(4):825–837

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke X, Shen L (2017) Molecular targeted therapy of cancer: The progress and future prospect. Front Lab Med 1(2):69–75

    Article  Google Scholar 

  • Kendziorski C, Newton M, Lan H, Gould M (2003) On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat Med 22(24):3899–3914

    Article  CAS  PubMed  Google Scholar 

  • Knudsen S (2006) Cancer diagnostics with DNA microarrays. Wiley, Hoboken

    Book  Google Scholar 

  • Konstantinos PKS, Darlix A, Jacot W, Blom AM (2019) High levels of cartilage oligomeric matrix protein in the serum of breast cancer patients can serve as an independent prognostic marker. Front Oncol 9:11–41

    Google Scholar 

  • Leblanc R, Peyruchaud O (2016) The role of platelets and megakaryocytes in bone metastasis. J Bone Oncol 5(3):109–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Li F, Yang M, Li Y, Zhang M, Wang W, Yuan D, Tang D (2020) An improved clear cell renal cell carcinoma stage prediction model based on gene sets. BMC Bioinform 21:1–15

    Article  Google Scholar 

  • Li J, Holm J, Bergh J, Eriksson M, Darabi H, Lindström LS, Törnberg S, Hall P, Czene K (2015) Breast cancer genetic risk profile is differentially associated with interval and screen-detected breast cancers. Ann Oncol 26(3):517–522

    Article  CAS  PubMed  Google Scholar 

  • Li X, Cowell JK, Sossey-Alaoui K (2004) Clca2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 23(7):1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Lien HC, Lee YH, Juang YL, Lu YT (2019) Fibrillin-1, a novel tgf-beta-induced factor, is preferentially expressed in metaplastic carcinoma with spindle sarcomatous metaplasia. Pathology 51(4):375–383

    Article  CAS  PubMed  Google Scholar 

  • Tt Liu, Xs Liu, Zhang M, Xn Liu, Fx Zhu, Fm Zhu, Sw Ouyang, Sb Li, Cl Song, Hm Sun et al (2018) Cartilage oligomeric matrix protein is a prognostic factor and biomarker of colon cancer and promotes cell proliferation by activating the akt pathway. J Cancer Res Clin Oncol 144(6):1049–1063

    Article  Google Scholar 

  • Lun A (2020) BiocSingular: singular value decomposition for bioconductor packages. R Project for Statistical Computing, Vienna

    Google Scholar 

  • Malvia S, Bagadi SAR, Pradhan D, Chintamani C, Bhatnagar A, Arora D, Sarin R, Saxena S (2019) Study of gene expression profiles of breast cancers in Indian women. Sci Rep 9(1):1–15

    Article  CAS  Google Scholar 

  • Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2019) e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). TU Wien, Vienna

    Google Scholar 

  • Moler E, Chow M, Mian I (2000) Analysis of molecular profile data using generative and discriminative methods. Physiol Genom 4(2):109–126

    Article  CAS  Google Scholar 

  • Network CGA et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61

    Article  Google Scholar 

  • Nishimura D (2001) Biocarta. Biotech Softw Internet Rep 2(3):117–120

    Article  Google Scholar 

  • Park JH, Katagiri T, Nakamura Y (2008) Pbk/topk, a mitotic ser/thr kinase, is a novel druggable target for breast cancer therapy. Cancer Cell Int. https://doi.org/10.1186/s12935-015-0178-0

    Article  Google Scholar 

  • Pavlidis P, Weston J, Cai J, Noble WS (2002) Learning gene functional classifications from multiple data types. J Comput Biol 9(2):401–411

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sørlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  • Prydz K (2015) Determinants of glycosaminoglycan (gag) structure. Biomolecules 5(3):2003–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragunath P, Reddy BV, Abhinand P, Ahmed SS (2012) Relevance of systems biological approach in the differential diagnosis of invasive lobular carcinoma & invasive ductal carcinoma. Bioinformation 8(8):359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratajczak-Wielgomas K, Grzegrzolka J, Piotrowska A, Matkowski R, Wojnar A, Rys J, Ugorski M, Dziegiel P (2017) Expression of periostin in breast cancer cells. Int J Oncol 51(4):1300–1310

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Winteringham LN, Lassmann T, Forrest AR (2019) Expression levels of therapeutic targets as indicators of sensitivity to targeted therapeutics. Mol Cancer Ther 18(12):2480–2489

    Article  CAS  PubMed  Google Scholar 

  • Saha SK, Yin Y, Chae HS, Cho SG (2019) Opposing regulation of cancer properties via krt19-mediated differential modulation of wnt/\(\beta\)-catenin/notch signaling in breast and colon cancers. Cancers 11(1):99

    Article  CAS  PubMed Central  Google Scholar 

  • Saha T (2012) Lamp2a overexpression in breast tumors promotes cancer cell survival via chaperone-mediated autophagy. Autophagy 8(11):1643–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sales G, Calura E, Cavalieri D, Romualdi C (2012) graphite-a bioconductor package to convert pathway topology to gene network. BMC Bioinform 13(1):20

    Article  Google Scholar 

  • Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) Pid: the pathway interaction database. Nucleic Acids Res 37(suppl–1):D674–D679

    Article  CAS  PubMed  Google Scholar 

  • Sharov AA, Dudekula DB, Ko MS (2005) A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21(10):2548–2549

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, Bapi RS, Vinod P (2018) Machine learning models to predict the progression from early to late stages of papillary renal cell carcinoma. Comput Biol Med 100:92–99

    Article  PubMed  Google Scholar 

  • Soni A, Ren Z, Hameed O, Chanda D, Morgan CJ, Siegal GP, Wei S (2015) Breast cancer subtypes predispose the site of distant metastases. Am J Clin Pathol 143(4):471–478

    Article  PubMed  Google Scholar 

  • Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, Van De Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron J, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100(14):8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci 100(18):10393–10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Js Kim, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatics 25(1):75–82

    Article  CAS  PubMed  Google Scholar 

  • Testa U, Castelli G, Pelosi E (2020) Breast cancer: a molecularly heterogenous disease needing subtype-specific treatments. Med Sci 8(1):18

    CAS  Google Scholar 

  • Todorov H, Fournier D, Gerber S (2018) Principal components analysis: theory and application to gene expression data analysis. Genom Comput Biol 4(2):e100041–e100041

    Article  Google Scholar 

  • Turner NC, Neven P, Loibl S, Andre F (2017) Advances in the treatment of advanced oestrogen-receptor-positive breast cancer. Lancet 389(10087):2403–2414

    Article  CAS  PubMed  Google Scholar 

  • Vallejos CS, Gómez HL, Cruz WR, Pinto JA, Dyer RR, Velarde R, Suazo JF, Neciosup SP, León M, Miguel A et al (2010) Breast cancer classification according to immunohistochemistry markers: subtypes and association with clinicopathologic variables in a peruvian hospital database. Clin Breast Cancer 10(4):294–300

    Article  PubMed  Google Scholar 

  • Vendrell J, Magnino F, Danis E, Duchesne M, Pinloche S, Pons M, Birnbaum D, Nguyen C, Theillet C, Cohen P (2004) Estrogen regulation in human breast cancer cells of new downstream gene targets involved in estrogen metabolism, cell proliferation and cell transformation. J Mol Endocrinol 32(2):397–414

    Article  CAS  PubMed  Google Scholar 

  • Villman K, Sjöström J, Heikkilä R, Hultborn R, Malmström P, Bengtsson NO, Söderberg M, Saksela E, Blomqvist C (2006) Top2a and her2 gene amplification as predictors of response to anthracycline treatment in breast cancer. Acta Oncol 45(5):590–596

    Article  CAS  PubMed  Google Scholar 

  • Wall ME, Rechtsteiner A, Rocha LM (2003) Singular value decomposition and principal component analysis. A practical approach to microarray data analysis. Springer, Berlin, pp 91–109

    Chapter  Google Scholar 

  • Wang S, Wang J, Chen H, Zhang B (2006) Svm-based tumor classification with gene expression data. International conference on advanced data mining and applications. Springer, Berlin, pp 864–870

    Chapter  Google Scholar 

  • Weigel MT, Dowsett M (2010) Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr Relat Cancer 17(4):R245–R262

    Article  CAS  PubMed  Google Scholar 

  • WHO (2020) WHO report on cancer: setting priorities, investing wisely and providing care for all. World Health Organization, Geneva

    Google Scholar 

  • Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, Desmedt C, Ignatiadis M, Sengstag T, Schütz F et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10(4):R65

    Article  PubMed  PubMed Central  Google Scholar 

  • Wonsey DR, Follettie MT (2005) Loss of the forkhead transcription factor foxm1 causes centrosome amplification and mitotic catastrophe. Can Res 65(12):5181–5189

    Article  CAS  Google Scholar 

  • Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, Ma L, Chen CH, Hishida T, Chang HT et al (2015) Hypoxia drives breast tumor malignancy through a tet-\(\text{ tnf }\alpha\)-p38-mapk signaling axis. Can Res 75(18):3912–3924

    Article  CAS  Google Scholar 

  • Wu Y, Wu P, Zhang Q, Chen W, Liu X, Zheng W (2019) Mfap5 promotes basal-like breast cancer progression by activating the EMT program. Cell Biosci 9(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Li DP, Shen N, Yu XC, Li JB, Song Q, Zhang JH (2015) Tpx2 promotes migration and invasion of human breast cancer cells. Asian Pac J Trop Med 8(12):1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Yeom YK, Chae EY, Kim HH, Cha JH, Shin HJ, Choi WJ (2019) Screening mammography for second breast cancers in women with history of early-stage breast cancer: factors and causes associated with non-detection. BMC Med Imaging 19(1):1–9

    Article  Google Scholar 

  • Yi T, Zhou X, Sang K, Huang X, Zhou J, Ge L (2019) Activation of lncrna lnc-slc4a1-1 induced by h3k27 acetylation promotes the development of breast cancer via activating cxcl8 and nf-kb pathway. Artif Cells Nanomed Biotechnol 47(1):3765–3773

    Article  CAS  PubMed  Google Scholar 

  • Yip GW, Smollich M, Götte M (2006) Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther 5(9):2139–2148

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Newton M, Sarkar D, Kendziorski C (2017) Ebarrays: unified approach for simultaneous gene clustering and differential expression identification. Biometrics. https://doi.org/10.1111/j.1541-0420.2006.00611.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Rucker EB III, Zhou BP (2016) Autophagy regulation in the development and treatment of breast cancer. Acta Biochim Biophys Sin 48(1):60–74

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Athira.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest, financial or otherwise.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

Additional information

Communicated by Shuhua Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 85 KB)

Supplementary file 2 (PDF 383 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, K., Gopakumar, G. Breast cancer stage prediction: a computational approach guided by transcriptome analysis. Mol Genet Genomics 297, 1467–1479 (2022). https://doi.org/10.1007/s00438-022-01932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01932-z

Keywords

Navigation