Skip to main content
Log in

PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The discovery and interpretation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) protein in mitochondrial biogenesis, skeletal muscle and adipose tissue development has broad research prospects, so it is important to review the related studies of PGC-1α in detail and comprehensively. PGC-1α is a protein composed of 798 amino acids (aa) with a molecular weight of about 91 kDa. PGC-1α is involved in the operation of the respiratory chain by combining with deacetylase and phosphorylase to bind some nuclear receptors. In addition, PGC-1α affects skeletal muscle and adipose metabolism by regulating mitochondrial oxidative phosphorylation. Recently, new data suggest that regulating mitochondrial metabolism in adipose tissue may be an effective adjunct to the treatment of obesity. In addition, dietary resveratrol, which has an effective anti-obesity effect, has been shown to promote mitochondrial biosynthesis by activating AMPK/PGC-1α axis, as well as to regenerate muscle damaged by obesity. In this review, we combined previous studies to explore the latest studies, showing that PGC-1α can regulate mitochondrial biogenesis and is regulated by AMPK and SIRT1. Furthermore, PGC-1α is a favored protein, which not only regulates muscle fiber type, inhibits muscle atrophy, but also participates in browning of white adipose tissue (WAT) and regulates body heat production. So, we concluded that PGC-1α is a key gene in mitochondrial biogenesis and plays an important role in the regulation and regulation of mitochondrial biogenesis along with other genes involved in the process. Meanwhile, PGC-1α acts as a core metabolic regulator in adipose tissue and skeletal muscle. This review comprehensively summarizes a large number of research findings. First, the role of PGC-1α in mitochondrial biogenesis was clarified, and then the key role of PGC-1α in the development of skeletal muscle and adipose tissue was reevaluated. Furthermore, the role of PGC-1α in some human diseases was discussed. Finally, the role of PGC-1α as a major gene in poultry was pointed out, and the future research direction was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen CD, Fletcher DL, Northcutt JK et al (1998) The relationship of broiler breast color to meat quality and shelf-life. Poult Sci 77(2):361–366

    Article  CAS  PubMed  Google Scholar 

  • Aquilano K, Baldelli S, Pagliei B et al (2013) Extranuclear localization of SIRT1 and PGC-1alpha: an insight into possible roles in diseases associated with mitochondrial dysfunction. Curr Mol Med 13(1):140–154

    Article  CAS  PubMed  Google Scholar 

  • Argentato PP, de Cassia CH, Estadella D et al (2018) Programming mediated by fatty acids affects uncoupling protein 1 (UCP-1) in brown adipose tissue. Br J Nutr 120(6):619–627

    Article  CAS  PubMed  Google Scholar 

  • Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16(14):1879–1886

    Article  CAS  PubMed  Google Scholar 

  • Bargut TC, Aguila MB, Mandarim-de-Lacerda CA (2016) Brown adipose tissue: updates in cellular and molecular biology. Tissue Cell 48(5):452–460

    Article  CAS  PubMed  Google Scholar 

  • Bitterman JL, Chung JH (2015) Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci 72(8):1473–1488

    Article  CAS  PubMed  Google Scholar 

  • Booth FW, Ruegsegger GN, Toedebusch RG et al (2015) Endurance exercise and the regulation of skeletal muscle metabolism. Prog Mol Biol Transl Sci 135:129–151

    Article  PubMed  Google Scholar 

  • Bottinelli R, Reggiani C (2000) Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 73(2–4):195–262

    Article  CAS  PubMed  Google Scholar 

  • Bouviere J, Fortunato RS, Dupuy C et al (2021) Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle. Antioxidants (Basel) 10(4):537

    Article  CAS  Google Scholar 

  • Buck SW, Gallo CM, Smith JS (2004) Diversity in the Sir2 family of protein deacetylases. J Leukoc Biol 75(6):939–950

    Article  CAS  PubMed  Google Scholar 

  • Calvo JA, Daniels TG, Wang X et al (2008) Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104(5):1304–1312

    Article  CAS  PubMed  Google Scholar 

  • Canto C, Jiang LQ, Deshmukh AS et al (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11(3):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casaburi I, Chimento A, De Luca A et al (2018) Cholesterol as an endogenous ERRalpha agonist: a new perspective to cancer treatment. Front Endocrinol (Lausanne) 9:525

    Article  Google Scholar 

  • Chambers JM, Wingert RA (2020) PGC-1alpha in disease: recent renal insights into a versatile metabolic regulator. Cells 9(10):2234

    Article  CAS  PubMed Central  Google Scholar 

  • Chappuis S, Ripperger JA, Schnell A et al (2013) Role of the circadian clock gene Per2 in adaptation to cold temperature. Mol Metab 2(3):184–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CF, Ku HC, Lin H (2018a) PGC-1alpha as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci 19(11):3447

    Article  PubMed Central  CAS  Google Scholar 

  • Chinsomboon J, Ruas J, Gupta RK et al (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci USA 106(50):21401–21406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins QF, Xiong Y, Lupo EJ et al (2006) p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem 281(34):24336–24344

    Article  CAS  PubMed  Google Scholar 

  • Correia JC, Ferreira DM, Ruas JL (2015) Intercellular: local and systemic actions of skeletal muscle PGC-1s. Trends Endocrinol Metab 26(6):305–314

    Article  CAS  PubMed  Google Scholar 

  • Cross HR, Durland PR, Seideman SC (1986) Sensory qualities of meat. Elsevier, Amsterdam

    Book  Google Scholar 

  • Diaz-Gerevini GT, Repossi G, Dain A et al (2016) Beneficial action of resveratrol: how and why? Nutrition 32(2):174–178

    Article  CAS  PubMed  Google Scholar 

  • Dusabimana T, Park EJ, Je J et al (2021) P2Y2R deficiency ameliorates hepatic steatosis by reducing lipogenesis and enhancing fatty acid beta-oxidation through AMPK and PGC-1alpha induction in high-fat diet-fed mice. Int J Mol Sci 22(11):5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116(3):615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26(3):271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM et al (2020) The role of PGC-1alpha and mitochondrial biogenesis in kidney diseases. Biomolecules 10(2):347

    Article  CAS  PubMed Central  Google Scholar 

  • Gan L, Liu Z, Chen Y et al (2016) alpha-MSH and Foxc2 promote fatty acid oxidation through C/EBPbeta negative transcription in mice adipose tissue. Sci Rep 6:36661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhart-Hines Z, Rodgers JT, Bare O et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26(7):1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes AP, Price NL, Ling AJ et al (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155(7):1624–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan HP, Ishizuka T, Chui PC et al (2005) Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev 19(4):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halling JF, Pilegaard H (2020) PGC-1alpha-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab 45(9):927–936

    Article  CAS  PubMed  Google Scholar 

  • Handschin C, Spiegelman BM (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454(7203):463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handschin C, Rhee J, Lin J et al (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA 100(12):7111–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handschin C, Kobayashi YM, Chin S et al (2007b) PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 21(7):770–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8(10):774–785

    Article  CAS  PubMed  Google Scholar 

  • Iacovelli J, Rowe GC, Khadka A et al (2016) PGC-1alpha induces human RPE oxidative metabolism and antioxidant capacity. Invest Ophthalmol vis Sci 57(3):1038–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irrcher I, Ljubicic V, Kirwan AF et al (2008) AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells. PLoS One 3(10):e3614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeremic N, Chaturvedi P, Tyagi SC (2017) Browning of white fat: novel insight into factors, mechanisms, and therapeutics. J Cell Physiol 232(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Chung E, Diffee G et al (2013) Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1alpha. Exp Gerontol 48(11):1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP (2012) Medicine. Irisin, light my fire. Science 336(6077):42–43

    Article  PubMed  Google Scholar 

  • Kim JM, Lee YJ, Choi YM et al (2008) Possible muscle fiber characteristics in the selection for improvement in porcine lean meat production and quality. Asian Australasian J Anim Sci 21(10):1529–1534

    Article  Google Scholar 

  • Kleiner S, Mepani RJ, Laznik D et al (2012) Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. Proc Natl Acad Sci USA 109(24):9635–9640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinge CM (2020) Estrogenic control of mitochondrial function. Redox Biol 31:101435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knebel B, Muller-Wieland D, Kotzka J (2020) Lipodystrophies-disorders of the fatty tissue. Int J Mol Sci 21(22):8778

    Article  CAS  PubMed Central  Google Scholar 

  • Koo SH, Satoh H, Herzig S et al (2004) PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 10(5):530–534

    Article  CAS  PubMed  Google Scholar 

  • Kressler D, Schreiber SN, Knutti D et al (2002) The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 277(16):13918–13925

    Article  CAS  PubMed  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Leclercq B, Kouassi-Kouakou J, Simon J (1985) Laying performances, egg composition, and glucose tolerance of geneticallylean orfat meat-type breeders. Poult Sci 64(9):1609–1616

    Article  CAS  PubMed  Google Scholar 

  • Li L, Chu X, Yao Y et al (2020) (−)-Hydroxycitric acid alleviates oleic acid-induced steatosis, oxidative stress, and inflammation in primary chicken hepatocytes by regulating AMP-activated protein kinase-mediated reactive oxygen species levels. J Agric Food Chem 68(40):11229–11241

    Article  CAS  PubMed  Google Scholar 

  • Liang D, Zhuo Y, Guo Z et al (2020) SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie 170:10–20

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Puigserver P, Donovan J et al (2002a) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277(3):1645–1648

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Wu H, Tarr PT et al (2002b) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhu S, Han W et al (2021) DMEP induces mitochondrial damage regulated by inhibiting Nrf2 and SIRT1/PGC-1alpha signaling pathways in HepG2 cells. Ecotoxicol Environ Saf 221:112449

    Article  CAS  PubMed  Google Scholar 

  • Maissan P, Mooij EJ, Barberis M (2021) Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: a systematic review. Biology (Basel) 10(3):194

    CAS  Google Scholar 

  • Martinez-Limon A, Joaquin M, Caballero M et al (2020) The p38 pathway: from biology to cancer therapy. Int J Mol Sci 21(6):1913

    Article  CAS  PubMed Central  Google Scholar 

  • Martinez-Redondo V, Pettersson AT, Ruas JL (2015) The hitchhiker’s guide to PGC-1alpha isoform structure and biological functions. Diabetologia 58(9):1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Memme JM, Slavin M, Moradi N et al (2021) Mitochondrial bioenergetics and turnover during chronic muscle disuse. Int J Mol Sci 22(10):5179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michishita E, Park JY, Burneskis JM et al (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monsalve M, Wu Z, Adelmant G et al (2000) Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell 6(2):307–316

    Article  CAS  PubMed  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273

    Article  CAS  PubMed  Google Scholar 

  • Mouler RM, Burdelova EO, Bar-Yishay I et al (2013) The metabolic regulator PGC-1alpha links anti-cancer cytotoxic chemotherapy to reactivation of hepatitis B virus. J Viral Hepat 20(1):34–41

    Article  Google Scholar 

  • Murgia M, Toniolo L, Nagaraj N et al (2017) Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging. Cell Rep 19(11):2396–2409

    Article  CAS  PubMed  Google Scholar 

  • Niu W, Wang H, Wang B et al (2021) Resveratrol improves muscle regeneration in obese mice through enhancing mitochondrial biogenesis. J Nutr Biochem 98:108804

    Article  CAS  PubMed  Google Scholar 

  • Oberkofler H, Schraml E, Krempler F et al (2003) Potentiation of liver X receptor transcriptional activity by peroxisome-proliferator-activated receptor gamma co-activator 1 alpha. Biochem J 371(Pt 1):89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen J, Kiilerich K, Pilegaard H (2010) PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch 460(1):153–162

    Article  CAS  PubMed  Google Scholar 

  • Onyango IG, Bennett JP, Stokin GB (2021) Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen Res 16(8):1467–1482

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsamanesh N, Asghari A, Sardari S et al (2021) Resveratrol and endothelial function: a literature review. Pharmacol Res 170:105725

    Article  CAS  PubMed  Google Scholar 

  • Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol 546(Pt 3):851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90

    Article  CAS  PubMed  Google Scholar 

  • Puigserver P, Wu Z, Park CW et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839

    Article  CAS  PubMed  Google Scholar 

  • Qiang L, Wang L, Kon N et al (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150(3):620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radak Z, Zhao Z, Koltai E et al (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18(10):1208–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajakumari S, Wu J, Ishibashi J et al (2013) EBF2 determines and maintains brown adipocyte identity. Cell Metab 17(4):562–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray HR, Yamada T, Ishizawa R et al (2015) Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by increasing cAMP levels. Metabolism 64(10):1334–1347

    Article  CAS  Google Scholar 

  • Reznick RM, Shulman GI (2006) The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 574(Pt 1):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rius-Perez S, Torres-Cuevas I, Millan I et al (2020) PGC-1alpha, inflammation, and oxidative stress: an integrative view in metabolism. Oxid Med Cell Longev 2020:1452696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Gerhart-Hines Z et al (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Rogacka D, Audzeyenka I, Rachubik P et al (2021) Involvement of nitric oxide synthase/nitric oxide pathway in the regulation of SIRT1-AMPK crosstalk in podocytes: impact on glucose uptake. Arch Biochem Biophys 709:108985

    Article  CAS  PubMed  Google Scholar 

  • Ross JA, Pearson A, Levy Y et al (2017) Exploring the role of PGC-1alpha in defining nuclear organisation in skeletal muscle fibres. J Cell Physiol 232(6):1270–1274

    Article  CAS  PubMed  Google Scholar 

  • Ruas JL, White JP, Rao RR et al (2012) A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scime A, Grenier G, Huh MS et al (2005) Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab 2(5):283–295

    Article  CAS  PubMed  Google Scholar 

  • Selsby JT, Morine KJ, Pendrak K et al (2012) Rescue of dystrophic skeletal muscle by PGC-1alpha involves a fast to slow fiber type shift in the mdx mouse. PLoS One 7(1):e30063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahgaldi S, Kahmini FR (2021) A comprehensive review of Sirtuins: with a major focus on redox homeostasis and metabolism. Life Sci 282:119803

    Article  CAS  PubMed  Google Scholar 

  • Spinelli S, Begani G, Guida L et al (2021) LANCL1 binds abscisic acid and stimulates glucose transport and mitochondrial respiration in muscle cells via the AMPK/PGC-1alpha/Sirt1 pathway. Mol Metab 53:101263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbacher P, Feichtinger RG, Kedenko L et al (2015) The single nucleotide polymorphism Gly482Ser in the PGC-1alpha gene impairs exercise-induced slow-twitch muscle fibre transformation in humans. PLoS One 10(4):e123881

    Article  CAS  Google Scholar 

  • St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408

    Article  CAS  PubMed  Google Scholar 

  • Tadaishi M, Miura S, Kai Y et al (2011) Skeletal muscle-specific expression of PGC-1alpha-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS One 6(12):e28290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima K, Ikeda K, Chang HY et al (2019) Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nat Metab 1(9):886–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39(2):87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terada S, Goto M, Kato M et al (2002) Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296(2):350–354

    Article  CAS  PubMed  Google Scholar 

  • Ueda M, Watanabe K, Sato K et al (2005) Possible role for avPGC-1alpha in the control of expression of fiber type, along with avUCP and avANT mRNAs in the skeletal muscles of cold-exposed chickens. FEBS Lett 579(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Vasquez-Reyes S, Velazquez-Villegas LA, Vargas-Castillo A et al (2021) Dietary bioactive compounds as modulators of mitochondrial function. J Nutr Biochem 96:108768

    Article  CAS  PubMed  Google Scholar 

  • Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20(5):1868–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venditti P, Bari A, Di Stefano L et al (2009) Involvement of PGC-1, NRF-1, and NRF-2 in metabolic response by rat liver to hormonal and environmental signals. Mol Cell Endocrinol 305(1–2):22–29

    Article  CAS  PubMed  Google Scholar 

  • Venditti P, Napolitano G, Barone D et al (2016) “Cold training” affects rat liver responses to continuous cold exposure. Free Radic Biol Med 93:23–31

    Article  CAS  PubMed  Google Scholar 

  • Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282(4):647–672

    Article  CAS  PubMed  Google Scholar 

  • Wang CH, Wei YH (2021) Therapeutic perspectives of thermogenic adipocytes in obesity and related complications. Int J Mol Sci 22(13):7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YX, Lee CH, Tiep S et al (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2):159–170

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhao X, Lotz M et al (2015) Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor gamma coactivator 1alpha. Arthritis Rheumatol 67(8):2141–2153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HT, Zhang YC, Xu MY et al (2020) Research progresses on PGC-1alpha, a key energy metabolic regulator. Sheng Li Xue Bao 72(6):804–816

    PubMed  Google Scholar 

  • Webb M, Sideris DP (2020) Intimate relations-mitochondria and ageing. Int J Mol Sci 21(20):7580

    Article  CAS  PubMed Central  Google Scholar 

  • Wen X, Wu J, Chang JS et al (2014) Effect of exercise intensity on isoform-specific expressions of NT-PGC-1 alpha mRNA in mouse skeletal muscle. Biomed Res Int 2014:402175

    PubMed  PubMed Central  Google Scholar 

  • Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124

    Article  CAS  PubMed  Google Scholar 

  • Wu GQ, Deng XM, Li JY et al (2006) A potential molecular marker for selection against abdominal fatness in chickens. Poult Sci 85(11):1896–1899

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Song P, Zhang W et al (2015) Activation of AMPKalpha2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med 21(4):373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap KH, Yee GS, Candasamy M et al (2020) Catalpol ameliorates insulin sensitivity and mitochondrial respiration in skeletal muscle of type-2 diabetic mice through insulin signaling pathway and AMPK/SIRT1/PGC-1alpha/PPAR-gamma activation. Biomolecules 10(10):1360

    Article  CAS  PubMed Central  Google Scholar 

  • Yoon JC, Puigserver P, Chen G et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413(6852):131–138

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ma K, Song S et al (2004a) Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). J Biol Chem 279(52):53963–53971

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Castellani LW, Sinal CJ et al (2004b) Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 18(2):157–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Huypens P, Adamson AW et al (2009) Alternative mRNA splicing produces a novel biologically active short isoform of PGC-1alpha. J Biol Chem 284(47):32813–32826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li R, Meng Y et al (2014) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63(2):514–525

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by Local Innovative and Research Teams Project of Guangdong Province (2019BT02N630), the Natural Scientific Foundation of China (U1901206 and 31761143014), Guangzhou Science and Technology Key Project (202103000084), and China Agriculture Research System (CARS-41-G03).

Author information

Authors and Affiliations

Authors

Contributions

The review was conceived and designed by QN. SK was the lead author of the review, completing the collection and analysis of relevant research and writing the first draft of the paper. BC participated in the analysis and collation of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qinghua Nie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Shuhua Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, S., Cai, B. & Nie, Q. PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Mol Genet Genomics 297, 621–633 (2022). https://doi.org/10.1007/s00438-022-01878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01878-2

Keywords

Navigation