Skip to main content
Log in

MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

MicroRNAs may increase cold stress tolerance by regulating stress-related signal transduction pathways and by modulating the expression of transcription factors. However, the molecular mechanism by which microRNAs enhance cold stress tolerance is not fully understood. Here, we report that overexpression of rice microRNA156 (OsmiR156) results in increased cell viability and growth rate under cold stress in Arabidopsis, pine, and rice. OsmiR156 increases cold stress tolerance by targeting OsSPL3. OsSPL3 positively regulates the expression of OsWRKY71, a negative regulator of the transcription factors OsMYB2 and OsMYB3R-2. OsMYB2 counteracts cold stress by activating the expression of the stress-response genes OsLEA3, OsRab16A, and OsDREB2A. OsMYB3R-2 counteracts cold stress by activating the expression of OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1. In OsmiR156 transgenic rice cell lines, the transcript levels of OsLEA3, OsRab16A, OsDREB2A, OsKNOLLE2, OsCTP1, OsCycB1.1, OsCycB2.1, and OsCDC20.1 were increased by OsWRKY71 knockdown and inversely regulated by OsWRKY71 overexpression, indicating that OsmiR156 enhances cold stress tolerance by regulating the expression of transcription factor genes in plant cells. These results will increase our understanding of microRNA-related cold stress tolerance in different plant species, including monocotyledonous, dicotyledonous, and gymnosperm plant species, and will be valuable in plant molecular biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

This article does not contain any large-scale data.

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Arenhart RA, Schunemann M, Bucker Neto L, Margis R, Wang ZY, Margis-Pinheiro M (2016) Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes. Plant Cell Environ 39:645–651

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Feyissa BA, Amyot L, Aung B, Hannoufa A (2017a) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci 258:122–136

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Gruber MY, Wall K, Hannoufa A (2017b) An insight into microRNA156 role in salinity stress responses of Alfalfa. Front Plant Sci 8:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Baek D, Chun HJ, Kang S, Shin G, Park SJ, Hong H, Kim C, Kim DH, Lee SY, Kim MC, Yun DJ (2016) A role for Arabidopsis miR399f in salt, drought, and ABA signaling. Mol Cells 39:111–118

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Baxter HL, Mazarei M, Dumitrache A, Natzke J, Rodriguez M, Gou J, Fu C, Sykes RW, Turner GB, Davis MF, Brown S, Davison B, Wang ZY, Stewart CN Jr (2017) Transgenic miR156 switchgrass in the field: growth, recalcitrance, and rust susceptibility. Plant Biotechnol J 16:39–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordstrom KJ, Wang R, Schneeberger K, Moerland PD, Coupland G (2013) Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094–1097

    Article  CAS  PubMed  Google Scholar 

  • Bredow M, Vanderbeld B, Walker VK (2016) Knockdown of ice-binding proteins in Brachypodium distachyon demonstrates their role in freeze protection. PLoS One 11:e0167941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt HI, Yang Z, Chen E, Zhao G, Gong Q, Yang Z, Zhang X, Li F (2017) Functional characterization of cotton GaMYB62L, a novel R2R3 TF in transgenic Arabidopsis. PLoS One 12:e0170578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PC (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 8:e59423

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Grosshans H (2009) Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461:546–549

    Article  CAS  PubMed  Google Scholar 

  • Debat HJ, Grabiele M, Aguilera PM, Bubillo RE, Otegui MB, Ducasse DA, Zapata PD, Marti DA (2014) Exploring the genes of yerba mate (Ilex paraguariensis A. St.-Hil.) by NGS and de novo transcriptome assembly. PLoS One 9:e109835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165

    Article  CAS  PubMed  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14:75–83

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie F, Zhang B (2016) A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep 6:19736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebelin V, Argout X, Engchuan W, Pitollat B, Duan C, Montoro P, Leclercq J (2012) Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC Plant Biol 12:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M, Casalongue CA (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One 9:e107678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imtiaz M, Yang Y, Liu R, Xu Y, Khan MA, Wei Q, Gao J, Hong B (2015) Identification and functional characterization of the BBX24 promoter and gene from chrysanthemum in Arabidopsis. Plant Mol Biol 89:1–19

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Ding N, Fan W, Yan J, Gu Y, Tang X, Li R, Tang G (2015) Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic. Plant Sci 233:11–21

    Article  CAS  PubMed  Google Scholar 

  • Jian H, Wang J, Wang T, Wei L, Li J, Liu L (2016) Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. Front Plant Sci 7:658

    PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Lee HJ, Ryu JY, Park CM (2016) SPL3/4/5 Integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Mol Plant 9:1647–1659

    Article  CAS  PubMed  Google Scholar 

  • Kamthan A, Chaudhuri A, Kamthan M, Datta A (2015) Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci 6:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Kis A, Tholt G, Ivanics M, Varallyay E, Jenes B, Havelda Z (2016) Polycistronic artificial miRNA-mediated resistance to wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol 17:427–437

    Article  CAS  PubMed  Google Scholar 

  • Lei KJ, Lin YM, Ren J, Bai L, Miao YC, An GY, Song CP (2016) Modulation of the phosphate-deficient responses by microRNA156 and its targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis. Plant Cell Physiol 57:192–203

    Article  CAS  PubMed  Google Scholar 

  • Li B, Byrt C, Qiu J, Baumann U, Hrmova M, Evrard A, Johnson AA, Birnbaum KD, Mayo GM, Jha D, Henderson SW, Tester M, Gilliham M, Roy SJ (2016a) Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis. Plant Physiol 170:1014–1029

    Article  CAS  PubMed  Google Scholar 

  • Li H, Dong Y, Chang J, He J, Chen H, Liu Q, Wei C, Ma J, Zhang Y, Yang J, Zhang X (2016b) High-throughput microRNA and mRNA sequencing reveals that micrornas may be involved in melatonin-mediated cold tolerance in Citrullus lanatus L. Front Plant Sci 7:1231

    PubMed  PubMed Central  Google Scholar 

  • Lippold F, Sanchez DH, Musialak M, Schlereth A, Scheible WR, Hincha DK, Udvardi MK (2009) AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol 149:1761–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovdal T, Olsen KM, Slimestad R, Verheul M, Lillo C (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X, Chong K (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150:244–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massoumi M, Krens FA, Visser RG, De Klerk GM (2017) Azacytidine and miR156 promote rooting in adult but not in juvenile Arabidopsis tissues. J Plant Physiol 208:52–60

    Article  CAS  PubMed  Google Scholar 

  • Mathieu J, Yant LJ, Murdter F, Kuttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7:e1000148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nah G, Lee M, Kim DS, Rayburn AL, Voigt T, Lee DK (2016) Transcriptome analysis of Spartina pectinata in response to freezing stress. PLoS One 11:e0152294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of α-Amy2 genes. Plant Mol Biol 29:691–702

    Article  CAS  PubMed  Google Scholar 

  • Saha G, Park JI, Ahmed NU, Kayum MA, Kang KK, Nou IS (2016) Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Physiol Biochem 104:200–215

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Tripathi A, Sanan-Mishra N (2015) Profiling the expression domains of a rice-specific microRNA under stress. Front Plant Sci 6:333

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen J, Xie K, Xiong L (2010) Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics 284:477–488

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Choi MG, Kang CS, Park CS, Choi SB, Park YI (2016) A wheat R2R3-MYB protein PURPLE PLANT1 (TaPL1) functions as a positive regulator of anthocyanin biosynthesis. Biochem Biophys Res Commun 469:686–691

    Article  CAS  PubMed  Google Scholar 

  • Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song G, Zhang R, Zhang S, Li Y, Gao J, Han X, Chen M, Wang J, Li W, Li G (2017) Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genom 18:212

    Article  CAS  Google Scholar 

  • Srivastava AK, Sablok G, Hackenberg M, Deshpande U, Suprasanna P (2017) Thiourea priming enhances salt tolerance through co-ordinated regulation of microRNAs and hormones in Brassica juncea. Sci Rep 7:45490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Newton RJ (2005) Transgenic Christmas trees regenerated from Agrobacterium tumefaciens-mediated transformation of zygotic embryos using the green fluorescence protein as a reporter. Mol Breeding 16:235–246

    Article  CAS  Google Scholar 

  • Tang W, Page M (2013) Transcription factor AtbZIP60 regulates expression of Ca2+ -dependent protein kinase genes in transgenic cells. Mol Biol Rep 40:2723–2732

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Weidner DA (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58:545–554

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut F, Grativol C, Carnavale-Bottino M, Rojas CA, Tanurdzic M, Farinelli L, Martienssen RA, Hemerly AS, Ferreira PC (2012) Computational identification and analysis of novel sugarcane microRNAs. BMC Genom 13:290

    Article  CAS  Google Scholar 

  • Tombuloglu H, Kekec G, Sakcali MS, Unver T (2013) Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol Genet Genomics 288:141–155

    Article  CAS  PubMed  Google Scholar 

  • Vendemiatti E, Zsogon A, Silva G, de Jesus FA, Cutri L, Figueiredo CRF, Tanaka FAO, Nogueira FTS, Peres LEP (2017) Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. Plant Sci 259:35–47

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang Q, Zhang B (2013) Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530:26–32

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang Y, Kohalmi SE, Amyot L, Hannoufa A (2016) SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2 controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana. Plant Mol Biol 92:661–674

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yu H, Xiong G, Lu Z, Jiao Y, Meng X, Liu G, Chen X, Wang Y, Li J (2017) Tissue-specific ubiquitination by IPA1 interacting Protein1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell 29:697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factor and microRNA156 in rice. Plant Physiol 142:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Wang Q, Sun R, Zhang B (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, Sunkar R, Zheng Y, Ji B, Al-Yahyai R, Farooq SA (2015) A genome-wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.). Front Plant Sci 6:946

    PubMed  PubMed Central  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Wang B, Li H, Liu R, Kalia RK, Zhu JK, Chinnusamy V (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci USA 109:18198–18203

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Liu M, Jiang J, Qiao G, Lin S, Li H, Xie L, Zhuo R (2012) Expression profile of miRNAs in Populus cathayana L. and Salix matsudana Koidz under salt stress. Mol Biol Rep 39:8645–8654

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge internal grants. We are also thankful to the central instrumentation facility of NIPGR for providing the necessary experimental setup. We thank the Council of Scientific Research and the University Commission. We further thank Dr. Prasad for support. The authors are grateful to Dr. Neale, Dr. Page, Dr. Bradshaw, Dr. Lischewski, Dr. Thompson, and Dr. Andersen-Ranberg for their critical reading and suggestions during the preparation of this manuscript.

Funding

This work was supported by a grant from the Education Committee of Hubei Providence of China and by the National Natural Science Foundation of China (31270740).

Author information

Authors and Affiliations

Authors

Contributions

WT and MZ conceived and designed the experiments. WT wrote the paper. WT and MZ performed the experiment and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Tang, W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Mol Genet Genomics 294, 379–393 (2019). https://doi.org/10.1007/s00438-018-1516-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1516-4

Keywords

Navigation