Skip to main content
Log in

Horizontal transfer of a novel Helentron in insects

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Helentrons represent a novel subtype of Helitrons. However, the evolutionary history of Helentrons in organisms is not clearly understood. In this study, we performed structure and autonomous partner analyses, which revealed that bm_455, a TE obtained from the Bombyx mori TE database, BmTEdb, was a member of Helentrons but not a long-terminal repeat (LTR) retrotransposon. Further analyses showed that bm_455 was also present in a wide range of insects including lepidopterans, coleopterans and hymenopterans using a homology-based search strategy. Several lines of evidence (high sequence identity, discontinuous distribution and lack of intense purifying selection) suggested that these elements could have been transferred into these species in part by horizontal transfers (HTs). Because Helentrons can capture host gene fragments, HTs of Helentrons might have a huge impact on their host genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Barbaglia AM, Klusman KM, Higgins J, Shaw JR, Hannah LC, Lal SK (2012) Gene capture by Helitron transposons reshuffles the transcriptome of maize. Genetics 190:965–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cultrone A, Dominguez YR, Drevet C, Scazzocchio C, Fernandez-Martin R (2007) The tightly regulated promoter of the xanA gene of Aspergillus nidulans is included in a Helitron. Mol Microbiol 63:1577–1587

    Article  CAS  PubMed  Google Scholar 

  • Du C, Fefelova N, Caronna J, He L, Dooner HK (2009) The polychromatic Helitron landscape of the maize genome. Proc Natl Acad Sci USA 106:19916–19921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison CE, Bachtrog D (2013) Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 342:846–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert C, Hernandez SS, Flores-Benabib J, Smith EN, Feschotte C (2012) Rampant horizontal transfer of SPIN transposons in squamate reptiles. Mol Biol Evol 29:503–515

    Article  CAS  PubMed  Google Scholar 

  • Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25:4650–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabundzija I, Messing SA, Thomas J, Cosby RL, Bilic I, Miskey C, Gogol-Döring A, Kapitonov V, Diem T, Dalda A, Jurka J, Pritham EJ, Dyda F, Izsvák Z, Ivics Z (2016) A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat Commun 7:10716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Gao J, Li F, Wang J (2014) Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions. Sci Rep 4:5119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han MJ, Shen YH, Xu MS, Liang HY, Zhang HH, Zhang Z (2013) Identification and evolution of the silkworm helitrons and their contribution to transcripts. DNA Res 20:471–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl DL, Lozovskaya ER, Nurminsky DI, Lohe AR (1997) What restricts the activity of mariner-like transposable elements. Trends Genet 13:197–201

    Article  CAS  PubMed  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledgebase of divergence times among organisms. Bioinformatics 22:2971–2972

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Lee D, Schulman AH (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. Methods Mol Biol 1116:271–302

    Article  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidwell MG (1992) Horizontal transfer of P-elements and other short inverted repeat transposons. Genetica 86:275–286

    Article  CAS  PubMed  Google Scholar 

  • Poulter RTM, Goodwin TJD, Butler MI (2003) Vertebrate helentrons and other novel Helitrons. Gene 313:201–212

    Article  CAS  PubMed  Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

  • Thomas J, Pritham EJ (2015) Helitrons, the eukaryotic rolling-circle transposable elements. Microbiol Spectr 3(4)

  • Thomas J, Schaack S, Pritham EJ (2010) Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol Evol 2:656–664

  • Thomas J, Vadnagara K, Pritham EJ (2014) DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons). Mob DNA 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

  • Xu HE, Zhang HH, Xia T, Han MJ, Shen YH, Zhang Z (2013) BmTEdb: a collective database of transposable elements in the silkworm genome. Database (Oxford) bat055

  • Yang L, Bennetzen JL (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci USA 106:19922–19927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HH, Xu HE, Shen YH, Han MJ, Zhang Z (2013) The origin and evolution of six miniature inverted-repeat transposable elements in Bombyx mori and Rhodnius prolixus. Genome Biol Evol 5:2020–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HH, Feschotte C, Han MJ, Zhang Z (2014) Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals. Genome Biol Evol 6:1375–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (31560308 and 31401106), the Natural Science Foundation of Jiangxi Province (20161BAB214151) and the Hi-Tech Research and Development (863) Program of China (2013AA102507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Yin Dai.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

HHZ declares that he has no conflict of interest. GYL declares that he has no conflict of interest. XMX declares that she has no conflict of interest. MJH declares that he has no conflict of interest. FYD declares that he has no conflict of interest.

Additional information

Communicated by S. Hohmann.

H.-H. Zhang, G.-Y. Li and X.-M. Xiong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1 Accession numbers of three host genes (Hsc70-4, tub3 and EF1a) in studied species (DOCX 13 kb)

Table S2 Consensus sequences of Helentron identified in this study (XLSX 11 kb)

Table S3 Pairwise comparison of Helentron nucleotide sequence identities in studied species (DOC 31 kb)

Table S4 Nucleotide sequence divergence of three host genes (Hsc70-4, tub3 and EF1a) (DOCX 14 kb)

438_2016_1270_MOESM5_ESM.pdf

Figure S1 Multiple alignments of non-autonomous Helentrons identified in this study. Their subTIRs and stem-loop were shown using black and red boxes, respectively (PDF 2602 kb)

438_2016_1270_MOESM6_ESM.pdf

Figure S2 Multiple alignments of the incomplete endonuclease encoded by Helentron_NA_CV with those of other reported Helentrons. A 175 aa protein was identified in the Helentron_NA_CV using ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi). This protein contained partial endonuclease sequences, which have 3/6 (V-VII) conserved motifs of complete endonuclease. Helentrons of other species was obtained from previous study (Thomas et al. 2014). Species abbreviations are as follows: CV, Cotesia vestalis; DR, Daniorerio; XM, Xiphophorus maculatus; SK, Saccoglossus kowalevskii; MC, Mucor circinelloides (PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HH., Li, GY., Xiong, XM. et al. Horizontal transfer of a novel Helentron in insects. Mol Genet Genomics 292, 243–250 (2017). https://doi.org/10.1007/s00438-016-1270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1270-4

Keywords

Navigation