Skip to main content
Log in

MicroRNA profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development and regeneration. Our previous studies showed that antler regeneration is a stem cell-based process and antler stem cells reside in the periosteum of a pedicle, the permanent bony protuberance, from which antler regeneration takes place. Antlers are the only mammalian organ that can fully regenerate and hence provide a unique opportunity to identify miRNAs that are involved in organ regeneration. In the present study, we used next generation sequencing technology sequenced miRNAs of the stem cells derived from either the potentiated or the dormant pedicle periosteum. A population of both conserved and 20 deer-specific miRNAs was identified. These conserved miRNAs were derived from 453 homologous hairpin precursors across 88 animal species, and were further grouped into 167 miRNA families. Among them, the miR-296 is embryonic stem cell-specific. The potentiation process resulted in the significant regulation (>±2 Fold, q value <0.05) of conserved miRNAs; 8 miRNA transcripts were down- and 6 up-regulated. Several GO biology processes and the Wnt, MAPK and TGF-beta signaling pathways were found to be up-regulated as part of antlerogenic stem cell potentiation process. This research has identified miRNAs that are associated either with the dormant or the potentiated antler stem cells and identified some target miRNAs for further research into their role played in mammalian organ regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao H, Kommadath A, Sun X, Meng Y, Arantes AS, Plastow GS, Guan LL, Stothard P (2013) Expansion of ruminant-specific microRNAs shapes target gene expression divergence between ruminant and non-ruminant species. BMC Genom 14:609

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck CW, Christen B, Slack JM (2003) Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 5:429–439

    Article  CAS  PubMed  Google Scholar 

  • Boettger T, Wust S, Nolte H, Braun T (2014) The miR-206/133b cluster is dispensable for development, survival and regeneration of skeletal muscle. Skelet Muscle 4:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonauer A, Boon RA, Dimmeler S (2010) Vascular microRNAs. Curr Drug Targets 11:943–949

    Article  CAS  PubMed  Google Scholar 

  • Bubenik GA, Bubenik AB, Stevens ED, Binnington AG (1982) The effect of neurogenic stimulation on the development and growth of bony tissues. J Exp Zool 219:205–216

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Rajewsky N (2006) Deep conservation of microRNA-target relationships and 3′UTR motifs in vertebrates, flies, and nematodes. Cold Spring Harb Symp Quant Biol 71:149–156

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen KD, Hsu LW, Goto S, Huang KT, Nakano T, Weng WT, Lai CY, Kuo YR, Chiu KW, Wang CC, Cheng YF, Lin CC, Ma YY, Chen CL (2014) Regulation of heme oxygenase 1 expression by miR-27b with stem cell therapy for liver regeneration in rats. Transpl Proc 46:1198–1200

    Article  CAS  Google Scholar 

  • Clark DE, Li C, Wang W, Martin SK, Suttie JM (2006) Vascular localization and proliferation in the growing tip of the deer antler. Anat Rec A Discov Mol Cell Evol Biol 288:973–981

    Article  PubMed  Google Scholar 

  • Desvignes T, Contreras A, Postlethwait JH (2014) Evolution of the miR199-214 cluster and vertebrate skeletal development. RNA Biol 11:281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diao H, Wang J, Shen C, Xia S, Guo T, Dong L, Zhang C, Chen J, Zhao J, Zhang J (2009) Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds. Tissue Eng Part A 15:2687–2698

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Meyer CA, Wang Q, Liu JS, Shirley Liu X, Zhang Y (2012) GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 28:2782–2788

    Article  CAS  PubMed  Google Scholar 

  • Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Lan J, Wu X, Yang D, Zhang Z, Nie H, Hou R, Zhang R, Zheng W, Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X, Yang G (2013) Identification of Dirofilaria immitis miRNA using illumina deep sequencing. Vet Res 44:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goss RJ (1995) Future directions in antler research. Anat Rec 241:291–302

    Article  CAS  PubMed  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerit D, Brondello JM, Chuchana P, Philipot D, Toupet K, Bony C, Jorgensen C, Noel D (2014) FOXO3A regulation by miRNA-29a Controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cells Dev 23:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Ho DM, Whitman M (2008) TGF-beta signaling is required for multiple processes during Xenopus tail regeneration. Dev Biol 315:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Meng X, Lu T, Wu L, Li T, Li M, Tian Y (2013) MicroRNA1 inhibits the proliferation of Chinese sika deerderived cartilage cells by binding to the 3′-untranslated region of IGF1. Mol Med Rep 8:523–528

    PubMed  Google Scholar 

  • Hu W, Li T, Hu R, Wu L, Li M, Meng X (2014a) MicroRNA let-7a and let-7f as novel regulatory factors of the sika deer (Cervus nippon) IGF-1R gene. Growth Factors 32:27–33

    Article  PubMed  Google Scholar 

  • Hu W, Li T, Wu L, Li M, Meng X (2014b) Identification of microRNA-18a as a novel regulator of the insulin-like growth factor-1 in the proliferation and regeneration of deer antler. Biotechnol Lett 36:703–710

    Article  CAS  PubMed  Google Scholar 

  • Hutchins ED, Markov GJ, Eckalbar WL, George RM, King JM, Tokuyama MA, Geiger LA, Emmert N, Ammar MJ, Allen AN, Siniard AL, Corneveaux JJ, Fisher RE, Wade J, DeNardo DF, Rawls JA, Huentelman MJ, Wilson-Rawls J, Kusumi K (2014) Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms. PLoS One 9:e105004

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang S, Park SK, Lee HY, Kim SW, Lee JS, Choi EK, You D, Kim CS, Suh N (2014) miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett 588:2957–2963

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587:3027–3031

    Article  CAS  PubMed  Google Scholar 

  • Jurka J (2000) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16:418–420

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf U, Kierdorf H, Szuwart T (2007) Deer antler regeneration: cells, concepts, and controversies. J Morphol 268:726–738

    Article  PubMed  Google Scholar 

  • Kierdorf U, Li C, Price JS (2009) Improbable appendages: deer antler renewal as a unique case of mammalian regeneration. Semin Cell Dev Biol 20:535–542

    Article  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li C, Suttie JM (1994) Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus). Anat Rec 239:198–215

    Article  CAS  PubMed  Google Scholar 

  • Li C, Suttie JM (1996) Histological examination of the antlerogenic region of red deer (Cervus elaphus) hummels. N Z Vet J 44:126–130

    Article  CAS  PubMed  Google Scholar 

  • Li C, Suttie JM (2003) Tissue collection methods for antler research. Eur J Morphol 41:23–30

    Article  CAS  PubMed  Google Scholar 

  • Li C, Suttie JM, Clark DE (2004) Morphological observation of antler regeneration in red deer (Cervus elaphus). J Morphol 262:731–740

    Article  PubMed  Google Scholar 

  • Li C, Suttie JM, Clark DE (2005) Histological examination of antler regeneration in red deer (Cervus elaphus). Anat Rec A Discov Mol Cell Evol Biol 282:163–174

    Article  PubMed  Google Scholar 

  • Li C, Mackintosh CG, Martin SK, Clark DE (2007a) Identification of key tissue type for antler regeneration through pedicle periosteum deletion. Cell Tissue Res 328:65–75

    Article  PubMed  Google Scholar 

  • Li CY, Mackintosh CG, Martin SK, Clark DE (2007b) Identification of key tissue type for antler regeneration through pedicle periosteum deletion. Cell Tissue Res 328:65–75

    Article  PubMed  Google Scholar 

  • Li C, Yang F, Sheppard A (2009) Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers. Curr Stem Cell Res Ther 4:237–251

    Article  CAS  PubMed  Google Scholar 

  • Li C, Harper A, Puddick J, Wang W, McMahon C (2012) Proteomes and signalling pathways of antler stem cells. PLoS One 7:e30026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhao H, Liu Z, McMahon C (2014) Deer antler—a novel model for studying organ regeneration in mammals. Int J Biochem Cell Biol 56C:111–122

    Article  Google Scholar 

  • Lin EA, Kong L, Bai XH, Luan Y, Liu CJ (2009) miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem 284:11326–11335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Sanchez A, Dudek KA, Murphy CL (2012) Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem 287:916–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5:e13984

    Article  PubMed  PubMed Central  Google Scholar 

  • Mount JG, Muzylak M, Allen S, Althnaian T, McGonnell IM, Price JS (2006) Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration. Dev Dyn 235:1390–1399

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Inloes JB, Katagiri T, Kobayashi T (2011) Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol 31:3019–3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaioannou G, Inloes JB, Nakamura Y, Paltrinieri E, Kobayashi T (2013) let-7 and miR-140 microRNAs coordinately regulate skeletal development. Proc Natl Acad Sci USA 110:E3291–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price J, Allen S (2004) Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond B Biol Sci 359:809–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolf HJ, Kierdorf U, Kierdorf H, Schulz J, Seymour N, Schliephake H, Napp J, Niebert S, Wolfel H, Wiese KG (2008) Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler. PLoS One 3:e2064

    Article  PubMed  PubMed Central  Google Scholar 

  • Schebesta M, Lien CL, Engel FB, Keating MT (2006) Transcriptional profiling of caudal fin regeneration in zebrafish. Sci World J 6:38–54

    Article  Google Scholar 

  • Sehm T, Sachse C, Frenzel C, Echeverri K (2009) miR-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol 334:468–480

    Article  CAS  PubMed  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocum D (2006) Regenerative biology and medicine. Academic, New York

    Google Scholar 

  • Stoick-Cooper CL, Moon RT, Weidinger G (2007) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21:1292–1315

    Article  CAS  PubMed  Google Scholar 

  • Suttie JM, Fennessy PF, Lapwood KR, Corson ID (1995) Role of steroids in antler growth of red deer stags. J Exp Zool 271:120–130

    Article  CAS  PubMed  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  CAS  PubMed  Google Scholar 

  • Terzic A, Nelson TJ (2013) Regenerative medicine primer. Mayo Clin Proc 88:766–775

    Article  PubMed  Google Scholar 

  • Thatcher EJ, Patton JG (2010) Small RNAs have a big impact on regeneration. RNA Biol 7:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thatcher EJ, Paydar I, Anderson KK, Patton JG (2008) Regulation of zebrafish fin regeneration by microRNAs. Proc Natl Acad Sci USA 105:18384–18389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Olson EN (2009) AngiomiRs–key regulators of angiogenesis. Curr Opin Genet Dev 19:205–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, Weissleder R, Breakefield XO, Krichevsky AM (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Zhong H, Zhou Y, Yu F, Gao Y, Luo Y, Tang Z, Guo Z, Guo E, Gan X, Zhang M, Zhang Y (2014) Identification and characterization of microRNAs in ovary and testis of Nile tilapia (Oreochromis niloticus) by using solexa sequencing technology. PLoS One 9:e86821

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S (2011) MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One 6:e21679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin VP, Thomson JM, Thummel R, Hyde DR, Hammond SM, Poss KD (2008) Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev 22:728–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin F, Cai J, Zen W, Wei Y, Zhou W, Yuan F, Singh SR, Wei Y (2015) Cartilage regeneration of adipose-derived stem cells in the TGF-beta1-immobilized PLGA-gelatin scaffold. Stem Cell Rev 11:453–459

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pizzute T, Pei M (2014) A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell Tissue Res 358:633–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L, Shi M, Xu X, Shen F, Chen M, Han Z, Peng Z, Zhai Q, Chen J, Zhang Z, Yang R, Ye J, Guan Z, Yang H, Gui Y, Wang J, Cai Z, Zhang X (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS ONE 5:e15224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank staff from Antler Research Group of Institute of Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, for the help of pedicle periosteum collection. We wish to thank Dr Dawn Coates for reading through the paper and giving valuable comments. This work was partially funded by Chinese National 863 program (2011AA100603), partially funded by Chinese National Science Foundation (31070878, 31402035) and partially Jilin Merit Aid Study Abroad Programs (2015-23). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The deer were euthanized and slaughtered in strict accordance with the local slaughtering procedure approved by the Animal Ethics Committee of Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2015_1158_MOESM1_ESM.pdf

Figure S1. Status of antler regeneration. Pedicle stumps just prior to the hard antlers (button) to cast, which is evidenced by the shiny appearance at the distal end of the pedicle skin (arrow) (PDF 370 kb)

438_2015_1158_MOESM2_ESM.pdf

Figure S2. Distribution of the annotation of assigned small RNAs in the PPP and the DPP libraries. A) Unique small RNAs. B) Total small RNAs (PDF 165 kb)

438_2015_1158_MOESM3_ESM.pdf

Figure S3. Validation of 20 novel miRNA expression in the PP by stem-loop RT-PCR. Length of the stem-loop RT-PCR primers are around 40 bp (PDF 1108 kb)

Table S1. Primer sequences used for six selected differentially expressed miRNAs (XLSX 9 kb)

Table S2. Primer sequences used for 20 novel deer-specific miRNAs (XLSX 10 kb)

Table S3. miRNAs differentially expressed in the PPP and the DPP (XLSX 167 kb)

438_2015_1158_MOESM7_ESM.txt

Table S4. Predicted target gene results (PPP-T) from the down-regulated miRNAs in the PPP through TargetScan (TXT 192 kb)

Table S5. Predicted target gene results (DPP-T) from the up-regulated miRNAs in the PPP through TargetScan (TXT 372 kb)

Table S6. Results of GO biological process analysis to the target genes in the PPP-T (TXT 19 kb)

Table S7. Results of GO biological process analysis to the target genes in the DPP-T (TXT 5 kb)

Supplementary material 11 (TXT 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, H., Wang, D. & Li, C. MicroRNA profiling of antler stem cells in potentiated and dormant states and their potential roles in antler regeneration. Mol Genet Genomics 291, 943–955 (2016). https://doi.org/10.1007/s00438-015-1158-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1158-8

Keywords

Navigation