Skip to main content
Log in

Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Ribosomal protein genes occasionally undergo successful migration from the mitochondrion to the nucleus in flowering plants and we previously presented evidence that the S19 ribosomal protein gene (rps19) had been transferred to the nucleus in the common ancestor of Poaceae grasses. In many lineages, the mitochondrial copy was subsequently lost or pseudogenized, although in rice it was retained and the nuclear copy lost. We have now determined that functional rps19 genes are present in both the mitochondrion and nucleus in brome grass (Bromus inermis). The mitochondrion-located rps19 gene, which is immediately downstream of an rpl2 pseudogene, is transcribed and edited. The nuclear-located rps19 gene is also actively expressed and it possesses the same intron-containing hsp70-type presequence as its counterparts in other grasses, as well as shared derived amino acids within the S19 core. We conclude that this brome rps19 gene is derived from the same transfer event that occurred in the common ancestor of grasses at least 60 million years ago. In the oat lineage, a subsequent exon shuffling-type event has resulted in novel amino-terminal sequences replacing part of the hsp70 presequence, and in the barley lineage, there has been an additional DNA-mediated transfer of the mitochondrial rps19 gene and its flanking sequences, followed by relatively recent loss of the mitochondrion-located copy. The prolonged persistence of functional copies in both compartments, as evidenced by present-day brome, raises interesting questions about their respective roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phyl Evol 29:380–395

    Article  CAS  Google Scholar 

  • Adams KL, Song K, Roessler PG, Nugent JM, Doyle JL, Doyle JJ, Palmer JD (1999) Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci USA 96:13863–13868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Armstrong KC (1979) A and B genome homoeologies in tetraploid and octaploid cytotypes of Bromus inermis. Can J Genet Cytol 21:65–71

    Article  Google Scholar 

  • Bittner-Eddy P, Monroy AF, Brambl R (1994) Expression of mitochondrial genes in the germinating conidia of Neurospora crassa. J Mol Biol 235:881–897

    Article  CAS  PubMed  Google Scholar 

  • Bonen L (2006) Mitochondrial genes leave home. New Phytol 172:379–381

    Article  CAS  PubMed  Google Scholar 

  • Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34

    Article  CAS  PubMed  Google Scholar 

  • Bonen L, Calixte S (2006) Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins. Mol Biol Evol 23:701–712

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brennicke A, Grohman L, Hiesel R, Knoop V, Shuster W (1993) The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants. FEB Lett 325:140–145

    Article  CAS  Google Scholar 

  • Brown TA, Ray JA, Waring RB, Scazzocchio C, Davies RW (1984) A mitochondrial reading frame which may code for a second form of ATPase subunit 9 in Aspergillus nidulans. Curr Genet 8:489–492

    Article  CAS  PubMed  Google Scholar 

  • Catalán P, Torrecilla P, López Rodríguez JA, Olmstead RG (2004) Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogenet Evol 31:517–541

    Article  PubMed  Google Scholar 

  • Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gornicki P (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci USA 105:9691–9696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi C, Liu Z, Adams KL (2006) Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes. New Phytol 172:429–439

    Article  CAS  PubMed  Google Scholar 

  • Déquard-Chablat M, Sellem CH, Golik P, Bidard F, Martos A, Bietenhader M, di Rago JP, Sainsard-Chanet A, Hermann-Le Denmat S, Contamine V (2011) Two nuclear life cycle-regulated genes encode interchangeable subunits c of mitochondrial ATP synthase in Podospora anserina. Mol Biol Evol 28:2063–2075

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Fallahi M, Crosthwait J, Calixte S, Bonen L (2005) Fate of mitochondrially located S19 protein genes after transfer of a functional copy to the nucleus in grasses. Mol Gen Genom 273:76–83

    Article  CAS  Google Scholar 

  • Figueroa P, Gómez I, Holuigue L, Araya A, Jordana X (1999) Transfer of rps14 from the mitochondrion to the nucleus in maize implied integration within a gene encoding the iron-sulphur subunit of succinate dehydrogenase and expression by alternative splicing. Plant J 18:601–609

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    Article  CAS  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    Article  CAS  PubMed  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:76–83

    Article  Google Scholar 

  • Guo W, Mower JP (2013) Evolution of plant mitochondrial intron-encoded maturases: frequent lineage-specific loss and recurrent intracellular transfer to the nucleus. J Mol Evol 77:43–54

    Article  CAS  PubMed  Google Scholar 

  • Hammani K, Giegé P (2014) RNA metabolism in plant mitochondria. Trends Plant Sci 19:380–389

    Article  CAS  PubMed  Google Scholar 

  • Hazle T, Bonen L (2007) Status of genes encoding the mitochondrial S1 ribosomal protein in closely-related legumes. Gene 405:108–116

    Article  CAS  PubMed  Google Scholar 

  • Huot JL, Enkler L, Megel C, Karim L, Laporte D, Becker HD, Duchêne AM, Sissler M, Maréchal-Drouard L (2014) Idiosyncrasies in decoding mitochondrial genomes. Biochimie 100:95–106

    Article  CAS  PubMed  Google Scholar 

  • Kannan S, Rogozin IB, Koonin EV (2014) MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes. BMC Evol Biol 14:237

    Article  PubMed Central  PubMed  Google Scholar 

  • Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91:1709–1725

    Article  CAS  PubMed  Google Scholar 

  • Kubo N, Ozawa K, Hino T, Kadowaki K (1996) A ribosomal protein L2 gene is transcribed, spliced and edited at one site in rice mitochondria. Plant Mol Biol 31:853–862

    Article  CAS  PubMed  Google Scholar 

  • Kubo N, Harada K, Hirai A, Kadowaki K (1999) A single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins. Proc Natl Acad Sci USA 96:9207–9211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li-Pook-Than J, Carrillo C, Bonen L (2004) Variation in mitochondrial transcript profiles of protein-coding genes during early germination and seedling development in wheat. Curr Genet 46:374–380

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhuang Y, Zhang P, Adams KL (2009) Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus. Mol Biol Evol 26:275–891

    Article  CAS  Google Scholar 

  • Ma PF, Guo ZH, Li DZ (2012) Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses. PLoS One 7:e30297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maier UG, Zauner S, Woehle C, Bolte K, Hempel F, Allen JF, Martin WF (2013) Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. Genome Biol Evol 5:2318–2329

    Article  PubMed Central  PubMed  Google Scholar 

  • Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481

    Article  CAS  PubMed  Google Scholar 

  • Ong HC, Palmer JD (2006) Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus. BMC Evol Biol 6:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Sánchez H, Fester T, Kloska S, Schröder W, Schuster W (1996) Transfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J 15:2138–2149

    PubMed Central  PubMed  Google Scholar 

  • Sandoval P, Leon G, Gomez I, Carmona R, Figueroa P, Holuigue L, Araya A, Jordana X (2004) Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 324:139–147

    Article  CAS  PubMed  Google Scholar 

  • Sloan DB, Muller K, McCauley DE, Taylor DR, Storchova H (2012) Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility. New Phytol 196:1228–1239

    Article  CAS  PubMed  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Stefanovic S, Pfeil BE, Palmer JD, Doyle JJ (2009) Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot 34:115–128

    Article  Google Scholar 

  • Subramanian S, Bonen L (2006) Rapid evolution in sequence and length of the nuclear-located gene for mitochondrial L2 ribosomal protein in cereals. Genome 49:275–281

    Article  CAS  PubMed  Google Scholar 

  • Takemura M, Oda K, Yamato K, Ohta E, Nakamura Y, Nozato N, Akashi K, Ohyama K (1992) Gene clusters for ribosomal proteins in the mitochondrial genome of a liverwort Marchantia polymorpha. Nucl Acids Res 20:3199–3205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takenaka M, Zehrmann A, Verbitsky D, Hartel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352

    Article  CAS  PubMed  Google Scholar 

  • Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849

    Article  PubMed  Google Scholar 

  • van den Boogaart P, Samallo J, Agsteribbe E (1982) Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298:187–189

    Article  PubMed  Google Scholar 

  • Wool IG (1996) Extraribosomal functions of ribosomal proteins. Trends Biochem Sci 21:164–165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Bonen laboratory for helpful discussions and Dr R. Pandeya (Agriculture and Agri-food Canada, Ottawa) for kindly providing seeds. Financial support from the Natural Sciences and Engineering Research Council of Canada is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Bonen.

Ethics declarations

Ethical standards

The authors declare that they have no conflict of interest, and this article does not contain any studies with human participants or animals.

Additional information

Communicated by B. Franz Lang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atluri, S., Rampersad, S.N. & Bonen, L. Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years. Mol Genet Genomics 290, 2325–2333 (2015). https://doi.org/10.1007/s00438-015-1087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1087-6

Keywords

Navigation