Skip to main content

Advertisement

Log in

Molecular detection of Babesia spp. and Rickettsia spp. in coatis (Nasua nasua) and associated ticks from midwestern Brazil

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Procyonids are reservoirs of many zoonotic infectious diseases, including tick-borne pathogens. The role of coatis (Nasua nasua) in the epidemiology of piroplasmids and Rickettsia has not been fully addressed in Brazil. To molecularly study these agents in coatis and associated ticks, animals were sampled in two urban areas in Midwestern Brazil. Blood (n = 163) and tick (n = 248) DNA samples were screened by PCR assays targeting the 18S rRNA and gltA genes of piroplasmids and Rickettsia spp., respectively. Positive samples were further molecularly tested targeting cox-1, cox-3, β-tubulin, cytB, and hsp70 (piroplasmid) and ompA, ompB, and htrA 17-kDa (Rickettsia spp.) genes, sequenced and phylogenetically analyzed. All coatis’ blood samples were negative for piroplasmids, whereas five pools of ticks (2%) were positive for two different sequences of Babesia spp.. The first from Amblyomma sculptum nymphs was close (i.e., ≥ 99% nucleotide identity) to a Babesia sp. previously found in capybaras (Hydrochoerus hydrochaeris); the second from Amblyomma dubitatum nymphs and Amblyomma spp. larvae was identical (100% nucleotide identity) to a Babesia sp. detected in opossums (Didelphis albiventris) and associated ticks. Four samples (0.8%) were positive by PCR to two different Rickettsia spp. sequences, being the first from Amblyomma sp. larva identical to Rickettsia belli and the second from A. dubitatum nymph identical to Rickettsia species from Spotted Fever Group (SFG). The detection of piroplasmids and SFG Rickettsia sp. highlights the importance of Amblyomma spp. in the maintenance of tick-borne agents in urban parks where humans and wild and domestic animals are living in sympatry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available in the NCBI GenBank Nucleotide platform (https://www.ncbi.nlm.nih.gov/genbank/) and can be accessed through the following accession numbers: Rickettsia sp. gltA (OQ054319, OQ054320, OQ054321, OQ054322), Babesia sp. 18SrRNA (OQ194049–OQ194053).

References

  • Abdad MY, Abou Abdallah R, Fournier PE, Stenos J, Vasoo S (2018) A concise review of the epidemiology and diagnostics of rickettsioses: Rickettsia and Orientia spp. J Clin Microbiol 56(8):e01728-e1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • André MR (2018) Diversity of Anaplasma and Ehrlichia/Neoehrlichia agents in terrestrial wild carnivores worldwide: implications for human and domestic animal health and wildlife conservation. Front Vet Sci 5:293. https://doi.org/10.3389/fvets.2018.00293

    Article  PubMed  PubMed Central  Google Scholar 

  • Baba K, Kaneda T, Nishimura H, Sato H (2013) Molecular detection of spotted fever group Rickettsia in feral raccoons (Procyon lotor) in the western part of Japan. J Vet Med Sci 75(2):195–197

    Article  CAS  PubMed  Google Scholar 

  • Barbieri AR, Romero L, Labruna MB (2012) Rickettsia bellii infecting Amblyomma sabanerae ticks in El Salvador. Pathog Glob Health 106(3):188–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbosa AD, Austen J, Portas TJ, Amigo JÁ, Ahlstrom LA, Oskam CL, Irwin PJ (2019) Sequence analyses at mitochondrial and nuclear loci reveal a novel Theileria sp and AID in the phylogenetic resolution of piroplasms from Australian marsupials and ticks. PLoS One 12:e0225822

    Article  Google Scholar 

  • Barreto WTG, Herrera HM, de Macedo GC, Rucco AC, de Assis WO, Oliveira-Santos LG, de Oliveira Porfírio GE (2021) Density and survivorship of the South American coati (Nasua nasua) in urban areas in Central-Western Brazil. Hystrix 32(1):82

    Google Scholar 

  • Bermúdez CSE, Troyo A (2018) A review of the genus Rickettsia in Central America. Res Rep Trop Med 9:103

    PubMed  PubMed Central  Google Scholar 

  • Birkenheuer AJ, Marr HS, Hladio N, Acton AE (2007) Molecular evidence of prevalent dual piroplasma infections in North American raccoons (Procyon lotor). Parasitol 135:33–37

    Article  Google Scholar 

  • Birkenheuer AJ, Levy MG, Breitschwerdt EB (2003) Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian genotype) and B. canis DNA in canine blood samples. J Clin Microb 41(9): 4172–4177

  • Black W, Piesman J (1994) Phylogeny of hard-and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA 91:10034–10038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos JBV, Martins FS, de Oliveira CE, Taveira AA, Oliveira JR, Gonçalves LR, Cordeiro MD, Calchi AC, de Campos BL, Serpa MCA, Barbieri ARM, Labruna MB, Machado RZ, de Andrade GB, André MR, Herrera HM (2021) Tick-borne zoonotic agents infecting horses from an urban area in Midwestern Brazil: epidemiological and hematological features. Trop Anim Health Prod 53(5):475

    Article  PubMed  PubMed Central  Google Scholar 

  • Campos JBV, Martins FS, Macedo GC, Barreto WTG, Oliveira CE, Barbieri ARM, Labruna MB, Oliveira-Santos LGR, Herrera HM (2022) Serological exposure of spotted fever group Rickettsia in capybaras (Hydrochoerus hydrochaeris) from urban parks in Campo Grande, Brazilian Midwest. Rev Soc Bras Med Trop 55(e0192):2022. https://doi.org/10.1590/0037-8682-0192-2022.eCollection

    Article  Google Scholar 

  • Castellaw AH, Chenney EF, Varela-Stokes AS (2011) Tick-borne disease agents in various wildlife from Mississippi. Vector-Borne Zoonotic Dis 11(4):439–442

    Article  PubMed  Google Scholar 

  • Clark K, Savick K, Butler J (2012) Babesia microti in rodents and raccoons from northeast Florida. J Parasitol 98(6):1117–1121

    Article  PubMed  Google Scholar 

  • Cleaveland S, Laurenson MK, Taylor LH (2001) Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc Lond B Biol Sci 356(1411):991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corduneanu A, Hrazdilová K, Sándor AD, Matei IA, Ionică AM, Barti L, Ciocănău MA, Măntoiu DȘ, Coroiu I, Hornok S, Fuehrer HP, Leitner N, Bagó Z, Stefke K, Modrý D, Mihalca AD (2017) Babesia vesperuginis, a neglected piroplasmid: new host and geographical records, and phylogenetic relations. Parasit Vectors 10(1):598

    Article  PubMed  PubMed Central  Google Scholar 

  • Criado-Fornelio A, Buling A, Casado N, Gimenez C, Ruas J, Wendt L, Barba-Carretero J (2009) Molecular characterization of arthropod-borne hematozoans in wild mammals from Brazil, Venezuela and Spain. Acta Parasitol 54(3):187–193

    Article  CAS  Google Scholar 

  • Dantas-Torres F, Martins TF, Muñoz-Leal S, Onofrio VC, Barros-Battesti DM (2019) Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: updated species checklist and taxonomic keys. Ticks Tick-Borne Dis 10(6):101252

    Article  PubMed  Google Scholar 

  • De Sousa KCM, Fernandes MP, Herrera HM, Freschi CR, Machado RZ, André MR (2018) Diversity of piroplasmids among wild and domestic mammals and ectoparasites in Pantanal wetland. Brazil Ticks Tick-Borne Dis 9(2):245–253

    Article  PubMed  Google Scholar 

  • Emmons L, Helgen K (2016) Nasua nasua. The IUCN Red List of Threatened Species 2016: e.T41684A45216227. https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41684A45216227.en

  • Friedhoff KT (2018) Transmission of Babesia. In: Babesiosis of domestic animals and man 23–52 CRC Press

  • Garrett KB, Hernandez SM, Balsamo G, Barron H, Beasley JC, Brown JD, Cloherty E, Farid H, Gabriel M, Groves B, Hamer S, Hill J, Lewis M, McManners K, Nemeth N, Oesterle P, Ortiz S, Peshock L, Schnellbacher R, Schott R, Yabsley MJ (2019) Prevalence, distribution, and diversity of cryptic piroplasm infections in raccoons from selected areas of the United States and Canada. Int J Parasitol Paras Wildl 9:224–233

    Article  Google Scholar 

  • Goethert HK, Telford SR (2003) What is Babesia microti? Parasitol 127(4):301–309

    Article  CAS  Google Scholar 

  • Gonçalves LR, Paludo G, Bisol TB, Perles L, de Oliveira LB, de Oliveira CM, André MR (2021) Molecular detection of piroplasmids in synanthropic rodents, marsupials, and associated ticks from Brazil, with phylogenetic inference of a putative novel Babesia sp. from white-eared opossum (Didelphis albiventris). Parasitol Res 20(10):3537–3546

    Article  Google Scholar 

  • Greay TL, Zahedi A, Krige A, Owens JM, Rees RL, Ryan UM, Oskam CL, Irwin PJ (2018) Endemic, exotic and novel apicomplexan parasites detected during a national study of ticks from companion animals in Australia. Parasit Vectors 11:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Hersh MH, Tibbetts M, Strauss M, Ostfeld RS, Keesing F (2012) Reservoir competence of wildlife host species for Babesia microti. Emerg Infec Dis 18(12):1951–1957

    Article  Google Scholar 

  • Hildebrand J, Perec-Matysiak A, Popiołek M, Merta D, Myśliwy I, Buńkowska-Gawlik K (2022) A molecular survey of spotted fever group rickettsiae in introduced raccoons (Procyon lotor). Parasit Vect 15(1):1–8

    Article  Google Scholar 

  • Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L (2018) The complexity of piroplasms life cycles. Front Cell Infect Microbiol 248:8. https://doi.org/10.3389/fcimb.2018.00248

    Article  CAS  Google Scholar 

  • Jalovecka M, Sojka D, Ascencio M, Schnittger L (2019) Babesia life cycle–when phylogeny meets biology. Trends Parasitol 13:356–368. https://doi.org/10.1016/j.pt.2019.01.007

    Article  Google Scholar 

  • Jefferies R, Ryan UM, Irwin PJ (2007) PCR–RFLP for the detection and differentiation of the canine piroplasm species and its use with filter paper-based technologies. Vet Parasitol 144:20–27

    Article  CAS  PubMed  Google Scholar 

  • Jinnai M, Kawabuchi-Kurata T, Tsuji M, Nakajima R, Fujisawa K, Nagata S, Ishihara C (2009) Molecular evidence for the presence of new Babesia species in feral raccoons (Procyon lotor) in Hokkaido. Japan Vet Parasitol 162(3–4):241–247

    Article  CAS  PubMed  Google Scholar 

  • Kawabuchi T, Tsuji M, Sado A, Matoba Y, Asakawa M, Ishihara C (2005) Babesia microti-like parasites detected in feral raccoons (Procyon lotor) captured in Hokkaido. Japan J Vet Med Sci 67(8):825–827

    Article  PubMed  Google Scholar 

  • Labruna MB, Whitworth T, Bouyer DH, McBride J, Camargo LMA, Camargo EP, Walker DH (2004a) Rickettsia bellii and Rickettsia amblyommii in Amblyomma ticks from the state of Rondônia, Western Amazon, Brazil. J Med Entomol 41:1073–1081

    Article  PubMed  Google Scholar 

  • Labruna MB, Whitworth T, Horta MC, Bouyer DH, McBride JW, Pinter A, Walker DH (2004b) Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of Sao Paulo, Brazil, where Brazilian spotted fever is endemic. J Clin Microbiol 42(1):90–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Labruna MB, Pacheco RC, Richtzenhain LJ, Szabo MP (2007) Isolation of Rickettsia rhipicephali and Rickettsia bellii from Haemaphysalis juxtakochi ticks in the state of São Paulo. Brazil Appl Environ Microbiol 73(3):869–873

    Article  CAS  PubMed  Google Scholar 

  • Labruna MB, Mattar S, Nava S, Bermudez S, Venzal JM, Dolz G, Zavala-Castro J (2011) Rickettsioses in Latin America, Caribbean, Spain and Portugal. MVZ Córdoba 16(2):2435–2457

    Article  Google Scholar 

  • Magalhães-Matos PC, de Araújo IM, de Almeida Valim JR, Ogrzewalska M, Guterres A, Cordeiro MD, da Fonseca AH (2022) Detection of Rickettsia spp. in ring-tailed coatis (Nasua nasua) and ticks of the Iguaçu National Park Brazilian Atlantic Rainforest. Ticks Tick-Borne Dis 13(2):101891

    Article  PubMed  Google Scholar 

  • Martins TF, Onofrio VC, Barros-Battesti DM, Labruna MB (2010) Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks Tick-Borne Dis 1(2):75–99

    Article  PubMed  Google Scholar 

  • McIntosh D, Bezerra RA, Luz HR, Faccini JLH, Gaiotto FA, Giné GAF, Albuquerque GR (2015) Detection of Rickettsia bellii and Rickettsia amblyommii in Amblyomma longirostre (Acari: Ixodidae) from Bahia state, northeast Brazil. Braz J Microbiol 46:879–883

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehrkens LR, Shender LA, Yabsley MJ, Shock BC, Chinchilla FA, Suarez J, Gilardi KV (2013) White-nosed coatis (Nasua narica) are a potential reservoir of Trypanosoma cruzi and other potentially zoonotic pathogens in Monteverde. Costa Rica J Wildl Dis 49(4):1014–1018

    Article  PubMed  Google Scholar 

  • Moraes-Filho J, Costa FB, Gerardi M, Soares HS, Labruna MB (2018) Rickettsia rickettsii co-feeding transmission among Amblyomma aureolatum ticks. Emerg Infec Dis 24(11):2041

    Article  CAS  Google Scholar 

  • Neves LC, Sousa-Paula LCD, Dias AS, da Silva BBF, Paula WVDF, de Paula LGF, Dantas-Torres F (2023) Detection of an undescribed Babesia sp. in capybaras and Amblyomma ticks in Central-Western Brazil. Animals 13(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Otranto D, Cantacessi C, Pfeffer M, Dantas-Torres F, Brianti E, Deplazes P, Genchi C, Guberti V, Capelli G (2015) The role of wild canids and felids in spreading parasites to dogs and cats in Europe: Part I: Protozoa and tick-borne agents. Vet Parasitol 213:12–23

    Article  PubMed  Google Scholar 

  • Pacheco RC, Horta MC, Moraes-Filho J, Ataliba AC, Pinter A, Labruna MB (2007) Rickettsial infection in capybaras (Hydrochoerus hydrochaeris) from São Paulo, Brazil: serological evidence for infection by Rickettsia bellii and Rickettsia parkeri. Biomedica 27(3):364–371

    Article  PubMed  Google Scholar 

  • Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Raoult D (2013) Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26(4):657–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Perles L, Martins TF, Barreto WTG, Carvalho de Macedo G, Herrera HM, Mathias LA, André MR (2022) Diversity and seasonal dynamics of ticks on ring-tailed coatis Nasua nasua (Carnivora: Procyonidae) in two urban areas from Midwestern Brazil. Animals 12(3):293

    Article  PubMed  PubMed Central  Google Scholar 

  • Polo G, Mera Acosta C, Labruna MB, Ferreira F (2017) Transmission dynamics and control of Rickettsia rickettsii in populations of Hydrochoerus hydrochaeris and Amblyomma sculptum. PLoS Negl Trop Dis 11(6):e0005613

    Article  PubMed  PubMed Central  Google Scholar 

  • Rainwater KL, Marchese K, Slavinski S, Humberg LA, Dubovi EJ, Jarvis JA, Calle PP (2017) Health survey of free-ranging raccoons (Procyon lotor) in Central Park, New York, New York, USA: implications for human and domestic animal health. J Wildl Dis 53(2):272–284

    Article  CAS  PubMed  Google Scholar 

  • Regnery RL, Spruill CL, Plikaytis B (1991) Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol 173(5):1576–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Roux V, Raoult D (2000) Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int J Syst Evol Microbiol 50(4):1449–1455

    Article  CAS  PubMed  Google Scholar 

  • Sakai RK, Costa FB, Ueno TE, Ramirez DG, Soares JF, Fonseca AH, Barros-Battesti DM (2014) Experimental infection with Rickettsia rickettsii in an Amblyomma dubitatum tick colony, naturally infected by Rickettsia bellii. Ticks Tick-Borne Dis 5(6):917–923

    Article  PubMed  Google Scholar 

  • Sashika M, Abe G, Matsumoto K, Inokuma H (2010) Molecular survey of rickettsial agents in feral raccoons (Procyon lotor) in Hokkaido Japan. Japanese J Infec Diseases 63(5):353–354

    Article  Google Scholar 

  • Schnittger L, Ganzinelli S, Bhoora R (2022) The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: species compilation, molecular phylogeny, and evolutionary insights. Parasitol Res 121:1207–1245

    Article  PubMed  Google Scholar 

  • Soares JF, Girotto A, Brandão PE, Da Silva AS, França RT, Lopes STA, Labruna MB (2011) Detection and molecular characterization of a canine piroplasm from Brazil. Vet Parasitol 180:203–208

    Article  CAS  PubMed  Google Scholar 

  • Souza CE, Moraes-Filho J, Ogrzewalska M, Uchoa FC, Horta MC, Souza SS, Labruna MB (2009) Experimental infection of capybaras Hydrochoerus hydrochaeris by Rickettsia rickettsii and evaluation of the transmission of the infection to ticks Amblyomma cajennense. Vet Parasitol 161(1–2):116–121

    Article  PubMed  Google Scholar 

  • Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform 11(1):1–9

    Article  Google Scholar 

  • Thompson CS, Mangold AJ, Félix ML, Carvalho L, Armúa-Fernández MT, Venzal JM (2018) Molecular evidence of Babesia species in Procyon cancrivorus (Carnivora, Procyonidae) in Uruguay. Vet Parasitol Reg Stud Rep 13:230–233

    Google Scholar 

  • Tsuji M, Zamoto A, Kawabuchi T, Kataoka T, Nakajima R, Asakawa M, Ishihara C (2006) Babesia microti-like parasites detected in Eurasian red squirrels (Sciurus vulgaris orientis) in Hokkaido. Japan J Vet Med Sci 68(7):643–646

    Article  PubMed  Google Scholar 

  • Tufts DM, Goodman LB, Benedict MC, Davis AD, VanAcker MC, Diuk-Wasser M (2021) Association of the invasive Haemaphysalis longicornis tick with vertebrate hosts, other native tick vectors, and tick-borne pathogens in New York City, USA. Int J Parasitol 51(2–3):149–157

    Article  CAS  PubMed  Google Scholar 

  • Uilenberg G (2006) Babesia—a historical overview. Vet Parasitol 138(1–2):3–10

    Article  PubMed  Google Scholar 

  • Yabsley MJ, Shock BC (2013) Natural history of zoonotic Babesia: role wildlife reservoirs. Int J Parasitol Par Wildl 2:18–31

    Article  Google Scholar 

  • Zamoto A, Tsuji M, Wei Q, Cho SH, Shin EH, Kim TS, Leonova GN, Hagiwara K, Asakawa M, Kariwa H, Takashima I, Ishihara C (2004) Epizootiologic survey for Babesia microti among small wild mammals in northeastern Eurasia and a geographic diversity in the beta-tubulin gene sequences. J Vet Med Sci 66(7):785–792

    Article  CAS  PubMed  Google Scholar 

  • Zemtsova G, Killmaster LF, Mumcuoglu KY, Levin ML (2010) Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp Appl Acarol 52(4):383–392

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the InsanaHuna Research Group (www.insanahuna.com) for the fieldwork support and to the reviewers whose suggestions significantly improved the paper. The authors also thank Prof. Marcelo Bahia Labruna (Departamento de Medicina Veterinária Preventiva e Saúde Animal, University of São Paulo, USP, São Paulo, SP, Brazil), who kindly provided the Rickettsia DNA positive control, and to Giada Annoscia (University of Bari) for the support at the molecular analyses.

Funding

This work was supported by FAPESP (Foundation for Research Support of the State of São Paulo) grants to M.R.A. (Process numbers #2018/02753–0; 2020/12037–0) and CNPq (National Council for Scientific and Technological Development) Productivity Grant to M.R.A. (CNPq Process # 303701/2021–8) and H.M.H. (CNPq Process #308768/2017–5). L.P. received scholarship from CNPq and FAPESP (2019/15150–4). M.A.B.S., J.A.M.R., and D.O. were partially supported by EU funding within the NextGenerationEU–MUR PNRR Extended Partnership initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT).

Author information

Authors and Affiliations

Authors

Contributions

L.P.: investigation and methodology, roles/writing—original draft, writing—review and editing. W.T.G.B.: investigation and methodology, writing—review and editing. G.C.d.M.: investigation and methodology, writing—review and editing. A.C.C.: investigation and methodology, writing—review and editing. M.B.-S.: investigation and methodology, writing—review and editing. J.A.M.-R.: investigation and methodology, writing—review and editing. D.O.: investigation and methodology, writing—review and editing. H.M.H.: funding acquisition, investigation and methodology, writing—review and editing. D.M.B.-B.: investigation and methodology, writing—review and editing. R.Z.M.: funding acquisition, investigation and methodology, writing—review and editing. M.R.A.: supervision, funding acquisition, roles/writing—original draft, writing—review and editing.

Corresponding author

Correspondence to M. R. André.

Ethics declarations

Ethical statement

All methods were carried out in accordance with relevant guidelines and regulations and were approved by the “Instituto Chico Mendes de Biodiversidade” (ICMBio) (SISBIO 49662–8) and by the Ethics Committee on Animal Use of the School of Agricultural and Veterinary Sciences, UNESP (CEUA FCAV/UNESP 06731/19), Ethics Committee on Animal Use of the Universidade Católica Dom Bosco (CEUA UCDB 001/2018), and “Sistema Nacional de Gestão de Patrimônio Genético” (ABDF0B5).

Conflict of interest

The authors declare no competing interests.

Additional information

Section Editor: Charlotte Oskam

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perles, L., Barreto, W.T.G., de Macedo, G.C. et al. Molecular detection of Babesia spp. and Rickettsia spp. in coatis (Nasua nasua) and associated ticks from midwestern Brazil. Parasitol Res 122, 1151–1158 (2023). https://doi.org/10.1007/s00436-023-07815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-023-07815-5

Keywords

Navigation