Skip to main content

Advertisement

Log in

Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model

  • Immunology and Host-Parasite Interactions - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Infection with helminth parasites or the administration of their antigens can prevent or attenuate autoimmune diseases. To date, the specific molecules that prime the amelioration are only limited. In this study, recombinant Schistosoma japonicum cystatin (rSjcystatin) and fructose-1,6-bisphosphate aldolase (rSjFBPA) were administered to female NOD mice via intraperitoneal (i.p.) injection to characterize the immunological response by the recombinant proteins. We have shown that the administration of rSjcystatin or rSjFBPA significantly reduced the diabetes incidence and ameliorated the severity of type 1 diabetes mellitus (T1DM). Disease attenuation was associated with suppressed interferon-gamma (IFN-γ) production in autoreactive T cells and with a switch to the production of Th2 cytokines. Following rSjcystatin or rSjFBPA injection, regulatory T cells (Tregs) were remarkably increased, which was accompanied by increased expression of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β). Our study suggests that helminth-derived proteins may be useful in strategies to limit pathology by promoting the Th2 response and upregulating Tregs during the inflammatory tissue-damage process in T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

rSjcystatin:

recombinant Schistosoma japonicum cystatin

rSjFBPA:

recombinant Schisotosoma japonicum fructose-1,6-bisphosphate aldolase

T1DM:

type 1 diabetes mellitus

CY:

cyclophosphamide

NOD:

nonobese diabetic

Tregs:

regulatory T cells

ELISA:

enzyme-linked immunosorbent assay

SEA:

soluble egg antigen

SWA:

soluble worm antigen

IBD:

inflammatory bowel disease

References

  • Ablamunits V, Quintana F, Reshef T, Elias D, Cohen IR (1999) Acceleration of autoimmune diabetes by cyclophosphamide is associated with an enhanced IFN-gamma secretion pathway. J Autoimmun 13:383–392

    CAS  PubMed  Google Scholar 

  • Bach JF (2018) The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol 18:105–120

    CAS  PubMed  Google Scholar 

  • Berbudi A, Ajendra J, Wardani AP, Hoerauf A, Hubner MP (2016) Parasitic helminths and their beneficial impact on type 1 and type 2 diabetes. Diabetes Metab Res Rev 32:238–250

    PubMed  Google Scholar 

  • Brode S, Raine T, Zaccone P, Cooke A (2006) Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 177:6603–6612

    CAS  PubMed  Google Scholar 

  • Chiang JL, Kirkman MS, Laffel LM, Peters AL (2014) Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 37:2034–2054

    PubMed  PubMed Central  Google Scholar 

  • Driver JP, Serreze DV, Chen YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33:67–87

    CAS  PubMed  Google Scholar 

  • Du L, Tang H, Ma Z, Xu J, Gao W, Chen J, Gan W, Zhang Z, Yu X, Zhou X, Hu X (2011) The protective effect of the recombinant 53-kDa protein of Trichinella spiralis on experimental colitis in mice. Dig Dis Sci 56:2810–2817

    CAS  PubMed  Google Scholar 

  • Espinoza-Jimenez A, De Haro R, Terrazas LI (2017) Taenia crassiceps antigens control experimental type 1 diabetes by inducing alternatively activated macrophages. Mediat Inflamm 2017:8074329

    Google Scholar 

  • Everts B, Hussaarts L, Driessen NN, Meevissen MH, Schramm G, van der Ham AJ, van der Hoeven B, Scholzen T, Burgdorf S, Mohrs M, Pearce EJ, Hokke CH, Haas H, Smits HH, Yazdanbakhsh M (2012) Schistosome-derived omega-1 drives Th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. J Exp Med 209(1753-1767):S1

    Google Scholar 

  • Han D, Leyva CA, Matheson D, Mineo D, Messinger S, Blomberg BB, Hernandez A, Meneghini LF, Allende G, Skyler JS, Alejandro R, Pugliese A, Kenyon NS (2011) Immune profiling by multiple gene expression analysis in patients at-risk and with type 1 diabetes. Clin Immunol 139:290–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • He B, Cai G, Ni Y, Li Y, Zong H, He L (2011) Characterization and expression of a novel cystatin gene from Schistosoma japonicum. Mol Cell Probes 25:186–193

    CAS  PubMed  Google Scholar 

  • Hubner MP, Shi Y, Torrero MN, Mueller E, Larson D, Soloviova K, Gondorf F, Hoerauf A, Killoran KE, Stocker JT, Davies SJ, Tarbell KV, Mitre E (2012) Helminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-beta. J Immunol 188:559–568

    PubMed  Google Scholar 

  • Jang SW, Cho MK, Park MK, Kang SA, Na BK, Ahn SC, Kim DH, Yu HS (2011) Parasitic helminth cystatin inhibits DSS-induced intestinal inflammation via IL-10(+)F4/80(+) macrophage recruitment. Korean J Parasitol 49:245–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MC, Wang B, Tisch R (2011) Genetic vaccination for re-establishing T-cell tolerance in type 1 diabetes. Hum Vaccin 7:27–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph J, Bittner S, Kaiser FM, Wiendl H, Kissler S (2012) IL-17 silencing does not protect nonobese diabetic mice from autoimmune diabetes. J Immunol 188:216–221

    CAS  PubMed  Google Scholar 

  • Khan AR, Fallon PG (2013) Helminth therapies: translating the unknown unknowns to known knowns. Int J Parasitol 43:293–299

    PubMed  Google Scholar 

  • Kordis D, Turk V (2009) Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol Biol 9:266

    PubMed  PubMed Central  Google Scholar 

  • Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D (2011) Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A 108:11548–11553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrecht BN, Hammad H (2017) The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol 18:1076–1083

    CAS  PubMed  Google Scholar 

  • Lau K, Benitez P, Ardissone A, Wilson TD, Collins EL, Lorca G, Li N, Sankar D, Wasserfall C, Neu J, Atkinson MA, Shatz D, Triplett EW, Larkin J 3rd. (2011) Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. J Immunol 186:3538–3546

    CAS  PubMed  Google Scholar 

  • Lipman TH, Ratcliffe SJ, Cooper R, Levitt Katz LE (2013) Population-based survey of the prevalence of type 1 and type 2 diabetes in school children in Philadelphia. J Diabetes 5:456–461

    PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lund ME, O'Brien BA, Hutchinson AT, Robinson MW, Simpson AM, Dalton JP, Donnelly S (2014) Secreted proteins from the helminth Fasciola hepatica inhibit the initiation of autoreactive T cell responses and prevent diabetes in the NOD mouse. PLoS One 9:e86289

    PubMed  PubMed Central  Google Scholar 

  • Marques HH, Zouain CS, Torres CB, Oliveira JS, Alves JB, Goes AM (2008) Protective effect and granuloma down-modulation promoted by RP44 antigen a fructose 1,6 bisphosphate aldolase of Schistosoma mansoni. Immunobiology 213:437–446

    CAS  PubMed  Google Scholar 

  • Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C (2009) Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 39:216–224

    CAS  PubMed  PubMed Central  Google Scholar 

  • McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, Hoffmuller U, Baron U, Olek S, Bluestone JA, Brusko TM (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 186:3918–3926

    CAS  PubMed  PubMed Central  Google Scholar 

  • McSorley HJ, Maizels RM (2012) Helminth infections and host immune regulation. Clin Microbiol Rev 25:585–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meevissen MH, Wuhrer M, Doenhoff MJ, Schramm G, Haas H, Deelder AM, Hokke CH (2010) Structural characterization of glycans on omega-1, a major Schistosoma mansoni egg glycoprotein that drives Th2 responses. J Proteome Res 9:2630–2642

    CAS  PubMed  Google Scholar 

  • Mishra PK, Patel N, Wu W, Bleich D, Gause WC (2013) Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunol 6:297–308

    CAS  PubMed  Google Scholar 

  • Mutapi F, Bourke C, Harcus Y, Midzi N, Mduluza T, Turner CM, Burchmore R, Maizels RM (2011) Differential recognition patterns of Schistosoma haematobium adult worm antigens by the human antibodies IgA, IgE, IgG1 and IgG4. Parasite Immunol 33:181–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana FJ, Carmi P, Cohen IR (2002) DNA vaccination with heat shock protein 60 inhibits cyclophosphamide-accelerated diabetes. J Immunol 169:6030–6035

    CAS  PubMed  Google Scholar 

  • Roep BO (2003) The role of T-cells in the pathogenesis of Type 1 diabetes: from cause to cure. Diabetologia 46:305–321

    CAS  PubMed  Google Scholar 

  • Saber M, Diab T, Hammam O, Karim A, Medhat A, Khela M, El-Dabaa E (2013) Protective and anti-pathology effects of Sm fructose-1,6-bisphosphate aldolase-based DNA vaccine against schistosoma mansoni by changing route of injection. Korean J Parasitol 51:155–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders KA, Raine T, Cooke A, Lawrence CE (2007) Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 75:397–407

    CAS  PubMed  Google Scholar 

  • Sun Z, Shen B, Wu H, Zhou X, Wang Q, Xiao J, Zhang Y (2015) The secreted fructose 1,6-bisphosphate aldolase as a broad spectrum vaccine candidate against pathogenic bacteria in aquaculture. Fish Shellfish Immunol 46:638–647

    CAS  PubMed  Google Scholar 

  • Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang CL, Zou JN, Zhang RH, Liu ZM, Mao CL (2019) Helminths protect against type 1 diabetes: effects and mechanisms. Parasitol Res 118:1087–1094

    PubMed  Google Scholar 

  • Teodorowicz M, Perdijk O, Verhoek I, Govers C, Savelkoul HF, Tang Y, Wichers H, Broersen K (2017) Optimized Triton X-114 assisted lipopolysaccharide (LPS) removal method reveals the immunomodulatory effect of food proteins. PLoS One 12:e0173778

    PubMed  PubMed Central  Google Scholar 

  • Tong Z, Liu W, Yan H, Dong C (2015) Interleukin-17A deficiency ameliorates streptozotocin-induced diabetes. Immunology 146:339–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Xie Y, Yang X, Wang X, Yan K, Zhong Z, Wang X, Xu Y, Zhang Y, Liu F, Shen J (2016) Therapeutic potential of recombinant cystatin from Schistosoma japonicum in TNBS-induced experimental colitis of mice. Parasit Vectors 9:6

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Liu J, Yue Y, Chen W, Song M, Zhan X, Wu Z (2014) Cloning, expression and characterisation of a type II cystatin from Schistosoma japonicum, which could regulate macrophage activation. Parasitol Res 113:3985–3992

    PubMed  Google Scholar 

  • Yasunami R, Bach JF (1988) Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur J Immunol 18:481–484

    CAS  PubMed  Google Scholar 

  • Yi Z, Li L, Garland A, He Q, Wang H, Katz JD, Tisch R, Wang B (2012) IFN-gamma receptor deficiency prevents diabetes induction by diabetogenic CD4+, but not CD8+, T cells. Eur J Immunol 42:2010–2018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccone P, Fehervari Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A (2003) Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 33:1439–1449

    CAS  PubMed  Google Scholar 

  • Zaccone P, Burton O, Miller N, Jones FM, Dunne DW, Cooke A (2009) Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice. Eur J Immunol 39:1098–1107

    CAS  PubMed  Google Scholar 

  • Zaccone P, Burton OT, Gibbs SE, Miller N, Jones FM, Schramm G, Haas H, Doenhoff MJ, Dunne DW, Cooke A (2011) The S. mansoni glycoprotein omega-1 induces Foxp3 expression in NOD mouse CD4(+) T cells. Eur J Immunol 41:2709–2718

    CAS  PubMed  Google Scholar 

  • Zhong ZR, Zhou HB, Li XY, Luo QL, Song XR, Wang W, Wen HQ, Yu L, Wei W, Shen JL (2010) Serological proteome-oriented screening and application of antigens for the diagnosis of Schistosomiasis japonica. Acta Trop 116:1–8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Li He at Wuhan University School of Medicine for providing rSjcystatin plasmid.

Funding

The work was funded by the Natural Science Foundation of Anhui Province (No 1308085MH124) and the Natural Science Research of Educational Department Anhui Province (No. KJ2015ZD31).

Author information

Authors and Affiliations

Authors

Contributions

KY and XYX were responsible for all experiments and drafted the manuscript. BW, HBZ, and QLL helped in the analysis and interpretation of tests. ZRZ and JLS were responsible for design of the study and reviewed the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Yunxia Xu or Zhengrong Zhong.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Animal Ethics Committee of Bengbu Medical College. And the consent to participate is not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Section Editor: Xing-Quan Zhu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key findings

Administration of rSjcystatin or rSjFBPA could reduce the incidence and ameliorated the severity of T1DM. Disease attenuation was associated with suppressed IFN-γ production and a shift of Th1 to Th2. And Tregs were remarkably increased, which was accompanied by increased expression of IL-10 and TGF-β.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Wang, B., Zhou, H. et al. Amelioration of type 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine model. Parasitol Res 119, 203–214 (2020). https://doi.org/10.1007/s00436-019-06511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-019-06511-7

Keywords

Navigation