Skip to main content
Log in

Epidemiology, hematology, and unusual morphological characteristics of Plasmodium during an avian malaria outbreak in penguins in Brazil

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Avian malaria is a mosquito-borne disease caused by Plasmodium spp. protozoa, and penguins are considered particularly susceptible to this disease, developing rapid outbreaks with potentially high mortality. We report on an outbreak of avian malaria in Magellanic penguins (Spheniscus magellanicus) at a rehabilitation center in Espírito Santo, southeast Brazil. In August and September 2015, a total of 89 Magellanic penguins (87 juveniles and 2 adults) received care at Institute of Research and Rehabilitation of Marine Animals. Over a period of 2 weeks, Plasmodium infections were identified in eight individuals (9.0%), four of which died (mortality = 4.5%, lethality = 50%). Blood smears and sequencing of the mitochondrial cytochrome b gene revealed the presence of Plasmodium lutzi SPMAG06, Plasmodium elongatum GRW06, Plasmodium sp. PHPAT01, Plasmodium sp. SPMAG10, and Plasmodium cathemerium (sequencing not successful). Two unusual morphological features were observed in individuals infected with lineage SPMAG06: (a) lack of clumping of pigment granules and (b) presence of circulating exoerythrocytic meronts. Hematological results (packed cell volume, plasma total solids, complete blood cell counts) of positive individuals showed differences from those of negative individuals depending on the lineages, but there was no overarching pattern consistently observed for all Plasmodium spp. The epidemiology of the outbreak and the phylogeography of the parasite lineages detected in this study support the notion that malarial infections in penguins undergoing rehabilitation in Brazil are the result of the spillover inoculation by plasmodia that circulate in the local avifauna, especially Passeriformes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson CT (2007) Avian malaria. In: Thomas N, Hunter D, Atkinson CT (eds) Infectious diseases of wild birds. Blackwell Publishing, Ames, pp 35–53

    Google Scholar 

  • Atkinson CT, LaPointe DA (2009) Introduced avian diseases, climate change, and the future of Hawaiian honeycreepers. J Avian Med Surg 23:53–63

    Article  PubMed  Google Scholar 

  • Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358

    Article  PubMed  Google Scholar 

  • Bernotienė R, Palinauskas V, Iezhova T, Murauskaitė D, Valkiūnas G (2016) Avian haemosporidian parasites (Haemosporida): a comparative analysis of different polymerase chain reaction assays in detection of mixed infections. Exp Parasitol 163:31–37

    Article  PubMed  CAS  Google Scholar 

  • Boersma PD, Frere E, Kane OJ et al (2013) Magellanic penguin (Spheniscus magellanicus). In: García-Borboroglu P, Boersma PD (eds) Penguins: natural history and conservation. University of Washington Press, Seattle, pp 285–302

    Google Scholar 

  • Botes A, Thiart H, Parsons NJ, Bellstedt DU (2017) Conservation implications of avian malaria exposure for African penguins during rehabilitation. S Afr J Sci 113:1–8

    Article  CAS  Google Scholar 

  • Bueno MG, Lopez RPG, de Menezes RMT et al (2010) Identification of Plasmodium relictum causing mortality in penguins (Spheniscus magellanicus) from São Paulo Zoo, Brazil. Vet Parasitol 173:123–127

    Article  PubMed  Google Scholar 

  • Chagas CRF, Valkiūnas G, Guimarães LO et al (2017) Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis. Malar J 16:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark NJ, Olsson-Pons S, Ishtiaq F, Clegg SM (2015) Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird. Int J Parasitol 45:891–899

    Article  PubMed  Google Scholar 

  • Dantas GPM, Almeida VS, Maracini P et al (2013) Evidence for northward extension of the winter range of Magellanic penguins along the Brazilian coast. Mar Ornithol 41:195–197

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dein FJ, Wilson A, Fischer D, Langenberg P (1994) Avian leucocyte counting using the hemocytometer. J Zoo Wildl Med 25:432–437

  • Fallon SM, Ricklefs RE, Swanson B, Bermingham E (2003) Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol 89:1044–1047

    Article  CAS  PubMed  Google Scholar 

  • Fecchio A, Pinheiro R, Felix G, Faria IP, Pinho JB, Lacorte GA, Braga EM, Farias IP, Aleixo A, Tkach VV, Collins MD, Bell JA, Weckstein JD (2018) Host community similarity and geography shape the diversity and distribution of haemosporidian parasites in Amazonian birds. Ecography 41:505–515

    Article  Google Scholar 

  • Fecchio A, Wells K, Bell JA, Tkach VV, Lutz HL, Weckstein JD, Clegg SM, Clark NJ (2019) Climate variation influences host specificity in avian malaria parasites. Ecol Lett 22:547–557

    Article  PubMed  Google Scholar 

  • Ferreira Junior FC, Rodrigues RA, Ellis VA, Leite LO, Borges MAZ, Braga ÉM (2017) Habitat modification and seasonality influence avian haemosporidian parasite distributions in southeastern Brazil. PLoS One 12:e0178791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fix AS, Waterhouse C, Greiner EC, Stoskopf MK (1988) Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). J Wildl Dis 24:610–619

    Article  CAS  PubMed  Google Scholar 

  • Gallo L, Vanstreels RET, Cook RA, Karesh WB, Uhart M (2019) Hematology, plasma biochemistry, and trace element reference values for free-ranging adult Magellanic Penguins (Spheniscus magellanicus). Polar Biol 42:733–742

    Article  Google Scholar 

  • Garamszegi LZ (2011) Climate change increases the risk of malaria in birds. Glob Chang Biol 17:1751–1759

    Article  Google Scholar 

  • Gering E, Atkinson CT (2004) A rapid method for counting nucleated erythrocytes on stained blood smears by digital image analysis. J Parasitol 90:879–881

    Article  PubMed  Google Scholar 

  • González AD, Lotta IA, García LF, Moncada LI, Matta NE (2015) Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data. Parasitol Int 64:48–59

    Article  PubMed  Google Scholar 

  • Graczyk TK, Shaw ML, Cranfield MR, Beall FB (1994) Hematologic characteristics of avian malaria cases in African black-footed penguins (Spheniscus demersus) during the first outdoor exposure season. J Parasitol 80:302–308

    Article  CAS  PubMed  Google Scholar 

  • Grilo M, Vanstreels R, Wallace R et al (2016) Malaria in penguins–current perceptions. Avian Pathol 45:393–407

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    Article  CAS  PubMed  Google Scholar 

  • Lacorte GA, Felix GM, Pinheiro RR et al (2013) Exploring the diversity and distribution of neotropical avian malaria parasites–a molecular survey from Southeast Brazil. PLoS One 8:e57770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin II, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195

    Article  Google Scholar 

  • Mantilla JS, Matta NE, Pacheco MA, Escalante AA, González AD, Moncada LI (2013) Identification of Plasmodium (Haemamoeba) lutzi (Lucena, 1939) from Turdus fuscater (great thrush) in Colombia. J Parasitol 99:662–669

    Article  PubMed  Google Scholar 

  • Manwell R, Sessler G (1971) Plasmodium paranucleophilum n. sp. from a South American tanager. J Protozool 18:629–632

    Article  CAS  PubMed  Google Scholar 

  • Marzal A, Ricklefs RE, Valkiūnas G, Albayrak T, Arriero E, Bonneaud C, Czirják GA, Ewen J, Hellgren O, Hořáková D, Iezhova TA, Jensen H, Križanauskienė A, Lima MR, de Lope F, Magnussen E, Martin LB, Møller AP, Palinauskas V, Pap PL, Pérez-Tris J, Sehgal RNM, Soler M, Szöllősi E, Westerdahl H, Zetindjiev P, Bensch S (2011) Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One 6:e21905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros MC, Hamer GL, Ricklefs RE (2013) Host compatibility rather than vector–host-encounter rate determines the host range of avian Plasmodium parasites. Proc R Soc B Biol Sci 280:20122947

    Article  Google Scholar 

  • Okanga S, Cumming GS, Hockey PA et al (2014) Host specificity and co-speciation in avian haemosporidia in the Western Cape, South Africa. PLoS One 9:e86382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Oliveira L, Cedrola F, Senra MVX, Scopel KKG, Martinele I, Tostes R, Dias RJP, D'Agosto M (2019) Polymorphism evidence in Plasmodium (Haemamoeba) lutzi Lucena, 1939 (Apicomplexa, Haemosporida) isolated from Brazilian wild birds. Parasitol Int 70:70–76

    Article  PubMed  Google Scholar 

  • Outlaw DC, Ricklefs RE (2014) Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141:1223–1232

    Article  PubMed  Google Scholar 

  • Pacheco MA, Matta NE, Valkiūnas G et al (2017) Mode and rate of evolution of haemosporidian mitochondrial genomes: timing the radiation of avian parasites. Mol Biol Evol 35:383–403

    Article  PubMed Central  CAS  Google Scholar 

  • Palinauskas V, Žiegytė R, Ilgūnas M, Iezhova TA, Bernotienė R, Bolshakov C, Valkiūnas G (2015) Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 45:51–62

    Article  PubMed  Google Scholar 

  • Palinauskas V, Žiegytė R, Iezhova TA, Ilgūnas M, Bernotienė R, Valkiūnas G (2016) Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite. Int J Parasitol 46:697–707

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Roos F, Belo N, Silveira P, Braga E (2015) Prevalence and diversity of avian malaria parasites in migratory Black Skimmers (Rynchops niger, Laridae, Charadriiformes) from the Brazilian Amazon Basin. Parasitol Res 114:3903–3911

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sijbranda D, Hunter S, Howe L, Lenting B, Argilla L, Gartrell BD (2017) Cases of mortality in little penguins (Eudyptula minor) in New Zealand associated with avian malaria. N Z Vet J 65:332–337

    Article  CAS  PubMed  Google Scholar 

  • Silveira P, Belo NO, Lacorte GA, Kolesnikovas CKM, Vanstreels RET, Steindel M, Catão-Dias JL, Valkiūnas G, Braga ÉM (2013) Parasitological and new molecular-phylogenetic characterization of the malaria parasite Plasmodium tejerai in South American penguins. Parasitol Int 62:165–171

    Article  CAS  PubMed  Google Scholar 

  • Stokes DL, Boersma PD, de Casenave JL, García-Borboroglu P (2014) Conservation of migratory Magellanic penguins requires marine zoning. Biol Conserv 170:151–161

    Article  Google Scholar 

  • Taunde PA, Bianchi MV, Perles L, da Silva FS, Guim TN, Stadler RA, André MR, Driemeier D, Pavarini SP (2019) Pathological and molecular characterization of avian malaria in captive Magellanic penguins (Spheniscus magellanicus) in South America. Parasitol Res 118:599–606

    Article  PubMed  Google Scholar 

  • Tompkins DM, Gleeson DM (2006) Relationship between avian malaria distribution and an exotic invasive mosquito in New Zealand. J R Soc N Z 36:51–62

    Article  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Raton

    Google Scholar 

  • Valkiūnas G, Iezhova TA (2018) Keys to the avian malaria parasites. Malar J 17:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Valkiūnas G, Bensch S, Iezhova TA, Križanauskienė A, Hellgren O, Bolshakov CV (2006) Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol 92:418–423

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Zehtindjiev P, Dimitrov D, Križanauskienė A, Iezhova TA, Bensch S (2008) Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in GenBank. Parasitol Res 102:1185–1193

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Palinauskas V, Ilgūnas M, Bukauskaitė D, Dimitrov D, Bernotienė R, Zehtindjiev P, Ilieva M, Iezhova TA (2014) Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife. Parasitol Res 113:2251–2263

    Article  PubMed  Google Scholar 

  • Vanstreels R, Parsons N (2014) Malária aviária e outros hemosporídeos aviários. In: Cubas Z, Silva J, Catão-Dias J (eds) Tratado de animais selvagens - medicina veterinária, 2nd edn. Roca, São Paulo, pp 1427–1443

    Google Scholar 

  • Vanstreels RET, Kolesnikovas CK, Sandri S et al (2014) Outbreak of avian malaria associated to multiple species of Plasmodium in magellanic penguins undergoing rehabilitation in southern Brazil. PLoS One 9:e94994

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanstreels RET, da Silva-Filho RP, Kolesnikovas CKM, Bhering R, Ruoppolo V, Epiphanio S, Amaku M, Junior F, Braga É, Catão-Dias J (2015) Epidemiology and pathology of avian malaria in penguins undergoing rehabilitation in Brazil. Vet Res 46:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanstreels RET, Braga EM, Catao-Dias JL (2016a) Blood parasites of penguins: a critical review. Parasitology 143:931–956

    Article  PubMed  Google Scholar 

  • Vanstreels RET, Capellino F, Silveira P, Braga ÉM, Rodríguez-Heredia SA, Loureiro J, Catão-Dias JL (2016b) Avian malaria (Plasmodium spp.) in captive Magellanic Penguins (Spheniscus magellanicus) from northern Argentina, 2010. J Wildl Dis 52:734–737

    Article  PubMed  Google Scholar 

  • Vanstreels RET, Uhart M, Rago V et al (2017) Do blood parasites infect Magellanic penguins (Spheniscus magellanicus) in the wild? Prospective investigation and climatogeographic considerations. Parasitology 144:698–705

    Article  PubMed  Google Scholar 

  • Webster T, Hunter S, Argilla L et al (2018) Increased prevalence of avian malaria in hoiho and preparation for future events. In: Proceedings of the 11th Oamaru Penguin Symposium 2018. Royal Society of New Zealand, Oamaru, p 10

    Google Scholar 

  • Zehtindjiev P, Križanauskienė A, Bensch S, Palinauskas V, Asghar M, Dimitrov D, Scebba S, Valkiūnas G (2012) A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction–based protocols for amplification of the cytochrome b gene. J Parasitol 98:657–666

    Article  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Instituto Estadual do Meio Ambiente e Recursos Hídricos (IEMA) for the valuable partnership that was essential to this study, and to the contributions by Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) and Instituto de Mamíferos Aquáticos (IMA). We are grateful for the indirect contributions by Jorge Oyakawa, Trudi Webster, Staffan Bensch and Gediminas Valkiūnas. We also would like to express our appreciation for the efforts by Staffan Bensch and colleagues in maintaining the MalAvi database. This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Minas Gerais Research Foundation (FAPEMIG), Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES), National Counsel of Technological and Scientific Development (CNPq), and the Program for Technological Development in Tools for Health-PDTIS-FIOCRUZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Eric Thijl Vanstreels.

Ethics declarations

All procedures in this study were approved by the Ethics Committee on Animal Use of the School of Veterinary Medicine and Animal Science of the University of São Paulo (CEUA 601415) and were authorized by the Brazilian authorities (SISBIO 20825-6).

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Section Editor: Larissa Howe

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 666 kb)

ESM 2

(XLS 108 kb)

ESM 3

(XLS 80 kb)

ESM 4

(JPG 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanstreels, R.E.T., Dutra, D.d., Ferreira-Junior, F.C. et al. Epidemiology, hematology, and unusual morphological characteristics of Plasmodium during an avian malaria outbreak in penguins in Brazil. Parasitol Res 118, 3497–3508 (2019). https://doi.org/10.1007/s00436-019-06459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-019-06459-8

Keywords

Navigation