Skip to main content

Advertisement

Log in

Assessment of combined tools and strategies for Aedes aegypti control with low environmental impact

  • Arthropods and Medical Entomology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The control of the mosquito vector Aedes aegypti L. (Diptera: Culicidae) is the main action against dengue, chikungunya, and Zika. The excessive use of conventional insecticides has promoted the development of other control methods and strategies with lower environmental impact. We evaluated the effectiveness of applying triflumuron 1 ppm and emptying water-filled containers in a field trial in temperate Argentina. Both control methods were implemented either individually or combined and regularly from the beginning of the mosquito reproductive season or once it reached peak abundance. The impact on a non-target midge of the genus Chironomus was also tested. The highest reductions of Ae. aegypti were achieved in treatments which included triflumuron. This effect was stronger when applied from the beginning of the reproductive season, with < 1.3% of positive containers throughout the entire season. No enhancing effects were obtained when combining both control methods. Treatments with triflumuron were not completely innocuous for the non-target species, with Chironomus sp. more susceptible to treatments including triflumuron applied from the beginning of the reproductive season than all others. Sharp reductions of mosquito populations in urban environments with high density of water-filled containers are possible with minimum container management efforts, by applying triflumuron 1 ppm every 6 weeks. In temperate urban settings, better results can be obtained when applications begin early in the reproductive season of the mosquito vector Aedes aegypti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achee NL, Gould F, Perkins TA, Reiner RC Jr, Morrison AC, Ritchie SA, Gubler DJ, Teyssou R, Scott TW (2015) A critical assessment of vector control for dengue prevention. PLoS Negl Trop Dis 9(5):e0003655. https://doi.org/10.1371/journal.pntd.0003655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali A, Lord J (1980) Experimental insect growth regulators against some nuisance chironomid midges of Central Florida. J Econ Entomol 73:243–249

    Article  CAS  PubMed  Google Scholar 

  • Ali A (1991) Perspectives on management of pestiferous Chironomidae (Diptera), an emerging global problem. J Am Mosq Control Assoc 7:260–281

    CAS  PubMed  Google Scholar 

  • Amarasekare KG, Edelson JV (2004) Effect of temperature on efficacy of insecticides to differential grasshopper (Orthoptera: Acrididae). J Econ Entomol 97:1595–1602

    Article  CAS  PubMed  Google Scholar 

  • Bang YH, Pant CP (1972) A field trial of abate larvicide for the control of Aedes aegypti in Bangkok, Thailand. Bull World Health Organ 46:416–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartón K (2013) MuMIn: Multi-model inference. R package version 1(15):6

    Google Scholar 

  • Batra CP, Mittal PK, Adak T, Ansari MA (2005) Efficacy of IGR compound Starycide 480 SC (triflumuron) against mosquito larvae in clear and polluted water. J Vector Borne Dis 42:109–116

    CAS  PubMed  Google Scholar 

  • Belinato TA, Martins AJ, Lima JB, Valle D (2013) Effect of triflumuron, a chitin synthesis inhibitor, on Aedes aegypti, Aedes albopictus and Culex quinquefasciatus under laboratory conditions. Parasit Vectors 6:83. https://doi.org/10.1186/1756-3305-6-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belinato TA, Martins AJ, Lima JBP, Camara TN, Peixoto AA, Valle D (2009) Effect of the chitin synthesis inhibitor triflumuron on the development, viability and reproduction of Aedes aegypti. Mem Inst Oswaldo Cruz 104:43–47

    Article  CAS  PubMed  Google Scholar 

  • Braga IA, Mello CB, Peixoto AA, Valle D (2005) Evaluation of methoprene effect on Aedes aegypti (Diptera: Culicidae) development in laboratory conditions. Mem Inst Oswaldo Cruz 100:435–440

    Article  CAS  PubMed  Google Scholar 

  • Chang FS, Tseng YT, Hsu PS, Chen CD, Lian IB, Chao DY (2015) Re-assess vector indices threshold as an early warning tool for predicting dengue epidemic in a dengue non-endemic country. PLoS Negl Trop Dis 9(9):e0004043. https://doi.org/10.1371/journal.pntd.0004043

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang MS, Christophel EM, Gopinath D, Abdur RM (2011) Challenges and future perspective for dengue vector control in the Western Pacific Region. Western Pac Surveill Response J 2:9–16

    PubMed  PubMed Central  Google Scholar 

  • Epler JH (2001) Identification Manual of the Larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida. Special Publication SJ2001-SP13. North Carolina Department of Environment and Natural Resources, Raleigh, NC, and St. Johns River Water Management District, Palatka

  • Fernández EA, Leontsini E, Sherman C, Chan AST, Reyes CE, Lozano RC, Fuentes BA, Nichter M, Winch PJ (1998) Trial of a community-based intervention to decrease infestation of Aedes aegypti mosquitoes in cement washbasins in El Progreso, Honduras. Acta Trop 70:171–183

    Article  PubMed  Google Scholar 

  • Giraldo-Calderón GI, Pérez M, Morales CA, Ocampo CB (2008) Evaluación del triflumurón y la mezcla de Bacillus thuringiensis más Bacillus sphaericus para el control de las formas inmaduras de Aedes aegypti y Culex quinquefasciatus en sumideros de Cali, Colombia. Biomedica 28:224–233

    Article  PubMed  Google Scholar 

  • Guzzetta G, Trentini F, Poletti P, Baldacchino FA, Montarsi F, Capelli G, Rizzoli A, Rosà R, Merler S, Melegaroet A (2017) Effectiveness and economic assessment of routine larviciding for prevention of chikungunya and dengue in temperate urban settings in Europe. PLoS Negl Trop Dis 11(9):e0005918. https://doi.org/10.1371/journal.pntd.0005918

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu JY, Liu C, Zhang YC, Zheng ZX (2009) Hydrolysis and photolysis of diacylhydrazines-type insect growth regulator js-118 in aqueous solutions under abiotic conditions. Bull Environ Contam Toxicol 82:610–615

    Article  CAS  PubMed  Google Scholar 

  • Jacups SP, Paton CJ, Ritchie S (2014) Residual and pre-treatment application of starycide insect growth regulador (triflumuron) to control Aedes aegypti in containers. Pest Manag Sci 70:572–575

    Article  CAS  PubMed  Google Scholar 

  • Johnson GD, Mulla MS (1982) Suppression of nuisance aquatic midges with a urea insect growth regulator. J Econ Entomol 75:297–300

    Article  Google Scholar 

  • Kantor IN (2018) Dengue, zika, chikungunya and the development of vaccines. Medicina (B Aires) 78(1):23–28

    Google Scholar 

  • Luz P, Codeço C, Medlock J, Struchiner C, Valle D, Galvani A (2009) Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Epidemiol Infect 137:1203–1215

    Article  CAS  PubMed  Google Scholar 

  • Oki M, Sunahara T, Hashizume M, Yamamoto T (2011) Optimal timing of insecticide fogging to minimize dengue cases: modeling dengue transmissions among various seasonalities and transmission intensities. PLoS Negl Trop Dis 5(10):e1367. https://doi.org/10.1371/journal.pntd.0001367

    Article  PubMed  PubMed Central  Google Scholar 

  • Phuanukoonnon S, Mueller I, Bryan JH (2005) Effectiveness of dengue control practices in household water containers in Northeast Thailand. Tropical Med Int Health 10:755–763

    Article  Google Scholar 

  • Powell JR, Tabachnick WJ (2013) History of domestication and spread of Aedes aegypti—a review. Mem Inst Oswaldo Cruz 108:11–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafikov M, Rafikova E, Yang HM (2015) Optimization of the Aedes aegypti control strategies for integrated vector management. In: J Appl Math, pp 1–8. https://doi.org/10.1155/2015/918194

    Chapter  Google Scholar 

  • Rossi GC, Mariluis JC, Schnack JA and Spinelli GR (2002) Dípteros vectores (Culicidae y Calliphoridae) de la Provincia de Buenos Aires. COBIOBO - PROBIOTA, La Platae

  • Rubio A, Bellocq MI, Vezzani D (2012) Community structure of artificial container-breeding flies (Insecta: Diptera) in relation to the urbanization level. Landsc Urban Plan 105:288–295

    Article  Google Scholar 

  • Rubio A, Bellocq MI, Vezzani D (2013) Macro- and microenvironmental factors affecting Tyre-breeding flies (Insecta: Diptera) in urbanised areas. Ecol Entomol 38:303–314

    Article  Google Scholar 

  • Rubio A, Cardo MV, Junges MT, Carbajo AE, Vezzani D (2018) Field efficacy of triflumuron against Aedes and Culex mosquitoes in temperate Argentina. J Asia Pac Entomol 21:150–155

    Article  Google Scholar 

  • Soltani N, Rehimi N, Beldi H, Bendali F (1999) Activité du triflumuron sur Culex pipiens pipiens (Diptera: Culicidae) et impacts sur deux espèces larvivores non visées. Ann Soc Entomol Fr 35:502–508

    Google Scholar 

  • Sulaiman S, Siti Hajar AS, Othman HF (2004) Residual efficacy of insect growth regulators pyriproxyfen, triflumuron and s-methoprene against Aedes aegypti (L.) in plastic containers in the field. Trop Biomed 21:97–100

    Google Scholar 

  • Suman DS, Parashar BD, Prakash S (2010) Efficacy of various insect growth regulators on organophosphate resistant immatures of Culex quinquefasciatus (Diptera: Culicidae) from different geographical areas of India. Indian J Entomol 7:33–43

    Article  CAS  Google Scholar 

  • Tassou KT, Schulz R (2011) Two-generation effects of the chitin synthesis inhibitor, teflubenzuron, on the aquatic midge Chironomus riparius. Ecotoxicol Environ Saf 74:1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Vezzani D, Albicócco AP (2009) The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers. Med Vet Entomol 23:78–84

    Article  CAS  PubMed  Google Scholar 

  • Vezzani D (2007) Artificial container-breeding mosquitoes and cemeteries: a perfect match. Tropical Med Int Health 12:299–313

    Article  Google Scholar 

  • Wiederholm T (1983) Chironomidae of the Holarctic region: keys and diagnoses. Part 1. Larvae. Scandinavian Entomology, Södra Sandby

  • Wilder-Smith A, Gubler D, Weaver SC, Monath TP, Heymann DL, Scott TW (2017) Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis 17:101–106

    Article  Google Scholar 

  • World Health Organization (2009) Dengue: guidelines for diagnosis, treatment, prevention and control. WHO, Geneva

  • World Health Organization (2012) Handbook for integrated vector management. WHO, Geneva

  • Yee DA (2008) Tires as habitats for mosquitoes: a review of studies within the eastern United States. J Med Entomol 45:581–593

    PubMed  Google Scholar 

  • Zuur AF, Leno EN, Walker NJ, Saveliev AA and Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

Download references

Acknowledgments

The authors would like to thank the authorities of the cemeteries for allowing us to work inside their boundaries.

Funding

This work was financially supported by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014-3217) and the Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 112-201301-00038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Rubio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Larissa Howe

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio, A., Cardo, M.V., Carbajo, A.E. et al. Assessment of combined tools and strategies for Aedes aegypti control with low environmental impact. Parasitol Res 118, 411–420 (2019). https://doi.org/10.1007/s00436-018-6178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6178-y

Keywords

Navigation