Skip to main content
Log in

Gene structure and expression patterns of Acdaf-1, a TGF-β type I receptor in Ancylostoma caninum

  • Helminthology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The components of the transforming growth factor β (TGF-β) signaling pathway in parasitic nematodes remain unknown. In this research, a type I receptor for TGF-β was isolated from the hookworm Ancylostoma caninum. The new gene was designated as Acdaf-1, a Caenorhabditis elegans daf-1 homolog. The full-length cDNA of Acdaf-1 encodes a 595-amino-acid protein with an NH2-terminal signal peptide. This protein has a cytoplasm tail (209-595aa region) which corresponds to the type 1a membrane topology. Between amino acid position 295–500, the protein contains the ATP binding site, substrate binding sites, and PKC-kinase-like domain. Real-time RT-PCR showed that the transcript was expressed in three main stages of A. caninum. It reached the maximal level in the female adult worm stage with lower transcript level in the first and second larvae (L1/L2) and intermediate level in L3 stages as well as in the male worms. After serum activation, the activity of Acdaf-1 was decreased in L3 larvae. These data implied that Acdaf-1 might relate to the infection ability of the larvae. Immunolocalization revealed that AcDAF-1 was present in eggs, intestine, and epidermis cells of larvae (L1, L2, and L3 stages) with strong signal in primordium of the gonads in L3 and was abundant in epidermis, intestine, and ovary of adult worm. These results suggested that Acdaf-1 might be involved in the interaction of the parasite and host relationship and provide a potential target for parasite control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TGF-β:

Transforming growth factor-β

ORF:

Open reading frame

PKC:

Protein kinase C

aa:

Amino acid

RT-PCR:

Reverse transcription-PCR

PCR:

Polymerase chain reaction

CLM:

Cutaneous larvae migrans

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

ES:

Excretory/secretory

References

  • Allendorph GP, Vale WW, Choe S (2006) Structure of the ternary signaling complex of a TGF-beta superfamily member. Proc Natl Acad Sci U S A 103:7643–7648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Arasu P (2001) In vitro reactivation of Ancylostoma caninum tissue-arrested third-stage larvae by transforming growth factor-beta. J Parasitol 87:733–738

    PubMed  CAS  Google Scholar 

  • Barna J, Princz A, Kosztelnik M, Hargitai B, Takacs-Vellai K, Vellai T (2012) Heat shock factor-1 intertwines insulin/IGF-1, TGF-beta and cGMP signaling to control development and aging. BMC Dev Biol 12:32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brand AM, Varghese G, Majewski W, Hawdon JM (2005) Identification of a DAF-7 ortholog from the hookworm Ancylostoma caninum. Int J Parasitol 35:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Crook M (2014) The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol 44:1–8

    Article  PubMed  Google Scholar 

  • Crook M, Grant WN (2013) Dominant negative mutations of Caenorhabditis elegans daf-7 confer a novel developmental phenotype. Dev Dyn 242:654–664

    Article  PubMed  CAS  Google Scholar 

  • Crook M, Thompson FJ, Grant WN, Viney ME (2005) daf-7 and the development of Strongyloides ratti and Parastrongyloides trichosuri. Mol Biochem Parasitol 139:213–223

    Article  PubMed  CAS  Google Scholar 

  • Estevez M, Attisano L, Wrana JL, Albert PS, Massague J, Riddle DL (1993) The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature 365:644–649

    Article  PubMed  CAS  Google Scholar 

  • Fielenbach N, Antebi A (2008) C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22:2149–2165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freitas TC, Arasu P (2005) Cloning and characterisation of genes encoding two transforming growth factor-beta-like ligands from the hookworm, Ancylostoma caninum. Int J Parasitol 35:1477–1487

    Article  PubMed  CAS  Google Scholar 

  • Gallo M, Riddle DL (2009) Effects of a Caenorhabditis elegans dauer pheromone ascaroside on physiology and signal transduction pathways. J Chem Ecol 35:272–279

    Article  PubMed  CAS  Google Scholar 

  • Georgi LL, Albert PS, Riddle DL (1990) daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell 61:635–645

    Article  PubMed  CAS  Google Scholar 

  • Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1:841–851

    Article  PubMed  CAS  Google Scholar 

  • Gilabert A, Curran DM, Harvey SC, Wasmuth JD (2016) Expanding the view on the evolution of the nematode dauer signalling pathways: refinement through gene gain and pathway co-option. BMC Genomics 17:476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gumienny TL, Savage-Dunn C (2013) TGF-beta signaling in C. elegans. WormBook 1–34. https://doi.org/10.1895/wormbook.1.22.2

  • Gunther CV, Georgi LL, Riddle DL (2000) A Caenorhabditis elegans type I TGF beta receptor can function in the absence of type II kinase to promote larval development. Development 127:3337–3347

    PubMed  CAS  Google Scholar 

  • Gupta V, Harkin DP, Kawakubo H, Maheswaran S (2004) Transforming growth factor-beta superfamily: evaluation as breast cancer biomarkers and preventive agents. Curr Cancer Drug Targets 4:165–182

    Article  PubMed  CAS  Google Scholar 

  • Huse M, Chen Y-G, Massagué J, Kuriyan J (1999) Crystal structure of the cytoplasmic domain of the type I TGF β receptor in complex with FKBP12. Cell 96:425–436

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Thomas JH (2000a) Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans dauer formation pathway. Genetics 156:1035–1046

    PubMed  CAS  PubMed Central  Google Scholar 

  • Inoue T, Thomas JH (2000b) Targets of TGF-beta signaling in Caenorhabditis elegans dauer formation. Dev Biol 217:192–204

    Article  PubMed  CAS  Google Scholar 

  • Kiss JE, Gao X, Krepp JM, Hawdon JM (2009) Interaction of hookworm 14-3-3 with the forkhead transcription factor DAF-16 requires intact Akt phosphorylation sites. Parasit Vectors 2:21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ludewig AH, Schroeder FC (2013) Ascaroside signaling in C. elegans. WormBook:1–22

  • Luo S, Kleemann GA, Ashraf JM, Shaw WM, Murphy CT (2010) TGF-beta and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 143:299–312

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McGehee AM, Moss BJ, Juo P (2015) The DAF-7/TGF-beta signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1. Mol Cell Neurosci 67:66–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Monsivais D, Matzuk MM, Pangas SA (2017) The TGF-beta family in the reproductive tract. Cold Spring Harb Perspect Biol 9

  • Nielsen H, Engelbrecht J, Brunak S,von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

  • Padgett RW (1999) TGFbeta signaling pathways and human diseases. Cancer Metastasis Rev 18:247–259

    Article  PubMed  CAS  Google Scholar 

  • Padgett RW, Savage C, Das P (1997) Genetic and biochemical analysis of TGF beta signal transduction. Cytokine Growth Factor Rev 8:1–9

    Article  PubMed  CAS  Google Scholar 

  • Padgett RW, Das P, Krishna S (1998) TGF-beta signaling, Smads, and tumor suppressors. Bioessays 20:382–390

    Article  PubMed  CAS  Google Scholar 

  • Patterson GI, Padgett RW (2000) TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet 16:27–33

    Article  PubMed  CAS  Google Scholar 

  • Rajan TV (1998) A hypothesis for the tissue specificity of nematode parasites. Exp Parasitol 89:140–142

    Article  PubMed  CAS  Google Scholar 

  • Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL (1996) Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274:1389–1391

    Article  PubMed  CAS  Google Scholar 

  • Savage-Dunn C (2005) TGF-beta signaling. WormBook 1–12. https://doi.org/10.1895/wormbook.1.22.2

  • Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT (2007) The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr Biol 17:1635–1645

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods), 4.0b.10. Sinauer Associates, Sunderland

  • Thompson JD, Higgins DG, Gibson TJ(1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

  • Viney ME (2009) How did parasitic worms evolve? BioEssays: news and reviews in molecular, cellular and developmental biology 31:496–499

    Article  CAS  Google Scholar 

  • Viney ME, Thompson FJ, Crook M (2005) TGF-beta and the evolution of nematode parasitism. Int J Parasitol 35:1473–1475

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Wei H, Qin W, Zheng J (2009) Expression and characterization of aspartic protease gene in eggs and larvae stage of Ancylostoma caninum. Parasitol Res 104:1327–1333

    Article  PubMed  Google Scholar 

  • Yang Y, Qin W, Wei H, Ying J, Zhen J (2011) Characterization of cathepsin B proteinase (AcCP-2) in eggs and larvae stages of hookworm Ancylostoma caninum. Exp Parasitol 129:215–220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the China National Nature Science foundation (No. 30972181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Yang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Section Editor: Xing-Quan Zhu

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Qiao, Y., Chen, J. et al. Gene structure and expression patterns of Acdaf-1, a TGF-β type I receptor in Ancylostoma caninum. Parasitol Res 118, 817–828 (2019). https://doi.org/10.1007/s00436-018-6142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6142-x

Keywords

Navigation