Skip to main content
Log in

Increased IL-27/IL-27R expression in association with the immunopathology of murine ocular toxoplasmosis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Interleukin 27 (IL-27) is a member of the IL-6/IL-12 family, and IL-27 receptor (IL-27R) consists of WSX-1 (the IL-27Rα subunit) and the signal-transducing subunit gp130. Human and mouse mast cells (MCs) express the IL-27R. To explore the expressions of IL-27/IL-27R subunits (WSX-1 and gp130) during acute ocular toxoplasmosis (OT), we established mouse model by intraocular injection of 500 Toxoplasma gondii RH strain tachyzoites. Histopathological changes were analyzed, MCs were counted by toluidine blue staining, and tryptase+/IL-27+ MCs were examined by immunofluorescence double-staining in the eyes and cervical lymph nodes (CLNs) of T. gondii-infected mice. The mRNA expressions of IL-27p28, WSX-1, gp130, and tachyzoite specific surface antigen 1 (SAG1) in the eyes and CLNs of T. gondii-infected mice, and the expressions of WSX-1 and gp130 in the murine mastocytoma cell line P815 infected with T. gondii tachyzoites in vitro were examined by using quantitative real-time reverse transcription-polymerase chain reaction. Our results showed that, after T. gondii infection, severe histopathological changes, increased numbers of total MCs and degranulated MCs, elevated expressions of IL-27p28, WSX-1, and gp130 were found in the eyes and CLNs, and significant correlations between the levels of IL-27 and SAG1 existed in the eyes and CLNs of T. gondii-infected mice. In addition, increased levels of WSX-1 and gp130 were examined in T. gondii-infected P815 cells. Our data suggested that IL-27/IL-27R expression induced by T. gondii infection may regulate MC-mediated immune response during acute OT in mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Artis D, Villarino A, Silverman M, He W, Thornton EM, Mu S, Summer S, Covey TM, Huang E, Yoshida H, Koretzky G, Goldschmidt M, Wu GD, de Sauvage F, Miller HRP, Saris CJM, Scott P, Hunter CA (2004) The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J Immunol 173:5626–5634

    Article  PubMed  CAS  Google Scholar 

  • Baek SH, Lee SG, Park YE, Kim GT, Kim CD, Park SY (2012) Increased synovial expression of IL-27 by IL-17 in rheumatoid arthritis. Inflamm Res 61:1339–1345. https://doi.org/10.1007/s00011-012-0534-7

    Article  PubMed  CAS  Google Scholar 

  • Charles E, Callegan MC, Blader IJ (2007) The SAG1 Toxoplasma gondii surface protein is not required for acute ocular toxoplasmosis in mice. Infect Immun 75:2079–2083. https://doi.org/10.1128/iai.01685-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz A, Mendes EA, de Andrade MV, do Nascimento VC, Cartelle CT, Arantes RM et al (2014) Mast cells are crucial in the resistance against Toxoplasma gondii oral infection. Eur J Immunol 44:2949–2954. https://doi.org/10.1002/eji.201344185

    Article  PubMed  CAS  Google Scholar 

  • Dukaczewska A, Tedesco R, Liesenfeld O (2015) Experimental models of ocular infection with Toxoplasma gondii. Eur J Microbiol Immunol (Bp) 5:293–305. https://doi.org/10.1556/1886.2015.00045

  • Fang Y, Xiang Z (2015) Roles and relevance of mast cells in infection and vaccination. J Biomed Res 30. https://doi.org/10.7555/jbr.30.20150038.

  • Gaddi PJ, Yap GS (2007) Cytokine regulation of immunopathology in toxoplasmosis. Immunol Cell Biol 85:155–159. https://doi.org/10.1038/sj.icb.7100038

    Article  PubMed  CAS  Google Scholar 

  • Garweg JG (2016) Ocular toxoplasmosis: an update. Klin Monatsbl Augenheilkd 233:534–539. https://doi.org/10.1055/s-0041-111821

    Article  PubMed  CAS  Google Scholar 

  • Garweg JG, Candolfi E (2009) Immunopathology in ocular toxoplasmosis: facts and clues. Mem Inst Oswaldo Cruz 104:211–220

    Article  PubMed  CAS  Google Scholar 

  • Gil CD, Mineo JR, Smith RL, Oliani SM (2002) Mast cells in the eyes of Calomys callosus (Rodentia: Cricetidae) infected by Toxoplasma gondii. Parasitol Res 88:557–562. https://doi.org/10.1007/s00436-002-0593-8

  • Hall AO, Beiting DP, Tato C, John B, Oldenhove G, Lombana CG, Pritchard GH et al (2012) The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity 37:511–523. https://doi.org/10.1016/j.immuni.2012.06.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Handel U, Brunn A, Drogemuller K, Muller W, Deckert M, Schluter D (2012) Neuronal gp130 expression is crucial to prevent neuronal loss, hyperinflammation, and lethal course of murine Toxoplasma encephalitis. Am J Pathol 181:163–173. https://doi.org/10.1016/j.ajpath.2012.03.029

  • Henderson WR Jr, Chi EY (1998) The importance of leukotrienes in mast cell-mediated Toxoplasma gondii cytotoxicity. J Infect Dis 177:1437–1443

    Article  PubMed  CAS  Google Scholar 

  • Hu MS, Schwartzman JD, Yeaman GR, Collins J, Seguin R, Khan IA, Kasper LH (1999) Fas-FasL interaction involved in pathogenesis of ocular toxoplasmosis in mice. Infect Immun 67:928–935

  • Huang B, Huang S, Chen Y, Zheng H, Shen J, Lun ZR, Wang Y, Kasper LH, Lu F (2013) Mast cells modulate acute toxoplasmosis in murine models. PLoS One 8:e77327. https://doi.org/10.1371/journal.pone.0077327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5:521–531. https://doi.org/10.1038/nri1648

    Article  PubMed  CAS  Google Scholar 

  • Jones LA, Roberts F, Nickdel MB, Brombacher F, McKenzie AN, Henriquez FL et al (2010) IL-33 receptor (T1/ST2) signalling is necessary to prevent the development of encephalitis in mice infected with Toxoplasma gondii. Eur J Immunol 40:426–436. https://doi.org/10.1002/eji.200939705

    Article  PubMed  CAS  Google Scholar 

  • Lu F, Huang S, Kasper LH (2004) CD4+ T cells in the pathogenesis of murine ocular toxoplasmosis. Infect Immun 72:4966–4972. https://doi.org/10.1128/iai.72.9.4966-4972.2004

  • Maia MM, Meira-Strejevitch CS, Pereira-Chioccola VL, de Hippólito DDC, Silva VO, Brandão de Mattos CC, Frederico FB, Siqueira RC, de Mattos LC, FAMERP and IAL Toxoplasma Research Group (2017) Evaluation of gene expression levels for cytokines in ocular toxoplasmosis. Parasite Immunol 39(10)

  • McMenamin PG (1997) The distribution of immune cells in the uveal tract of the normal eye. Eye (Lond) 11(Pt 2):183–193. https://doi.org/10.1038/eye.1997.49.

    Article  Google Scholar 

  • Messina A, Knight KR, Dowsing BJ, Zhang B, Phan LH, Hurley JV, Morrison WA, Stewart AG (2000) Localization of inducible nitric oxide synthase to mast cells during ischemia/reperfusion injury of skeletal muscle. Lab Investig 80:423–431

    Article  PubMed  CAS  Google Scholar 

  • Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF, Phillips JH, McClanahan TK, de Waal Malefyt R, Kastelein RA (2004) WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol 172:2225–2231

    Article  PubMed  CAS  Google Scholar 

  • Qiu HN, Liu B, Liu W, Liu S (2016) Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem 411:1–10. https://doi.org/10.1007/s11010-015-2563-3

  • Silver JS, Stumhofer JS, Passos S, Ernst M, Hunter CA (2011) IL-6 mediates the susceptibility of glycoprotein 130 hypermorphs to Toxoplasma gondii. J Immunol 187:350–360. https://doi.org/10.4049/jimmunol.1004144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM, Villarino AV, Huang Q, Yoshimura A, Sehy D, Saris CJM, O'Shea JJ, Hennighausen L, Ernst M, Hunter CA (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7:937–945. https://doi.org/10.1038/ni1376

    Article  PubMed  CAS  Google Scholar 

  • Subauste CS, Koniaris AH, Remington JS (1991) Murine CD8+ cytotoxic T lymphocytes lyse Toxoplasma gondii-infected cells. J Immunol 147:3955–3959

  • Villarino A, Hibbert L, Lieberman L, Wilson E, Mak T, Yoshida H, Kastelein RA, Saris C, Hunter CA (2003) The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19:645–655

    Article  PubMed  CAS  Google Scholar 

  • Villarino AV, Stumhofer JS, Saris CJ, Kastelein RA, de Sauvage FJ, Hunter CA (2006) IL-27 limits IL-2 production during Th1 differentiation. J Immunol 176:237–247

    Article  PubMed  CAS  Google Scholar 

  • Walker EC, Poulton IJ, McGregor NE, Ho PW, Allan EH, Quach JM, Martin TJ, Sims NA (2012) Sustained RANKL response to parathyroid hormone in oncostatin M receptor-deficient osteoblasts converts anabolic treatment to a catabolic effect in vivo. J Bone Miner Res 27:902–912. https://doi.org/10.1002/jbmr.1506

    Article  PubMed  CAS  Google Scholar 

  • Walls AF, Jones DB, Williams JH, Church MK, Holgate ST (1990) Immunohistochemical identification of mast cells in formaldehyde-fixed tissue using monoclonal antibodies specific for tryptase. J Pathol 162:119–126

  • Yoshida H, Hunter CA (2015) The immunobiology of interleukin-27. Annu Rev Immunol 33:417–443

    Article  PubMed  CAS  Google Scholar 

Download references

Financial support

Research reported in this publication was supported in part by the Natural Science Foundation of China (no. 81471973); the 2016 Medical Education Research Project of Chinese Medical Association Medical Education Branch and China Higher Education Society of Medical Education Professional Committee (2016B-KY013); the Education and Teaching Reform Project of Sun Yat-sen University, China (2016), and the National College Student Alliance for Innovation & Entrepreneurship Practice Project, China (SMPY1713).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiguang Huang or Fangli Lu.

Ethics declarations

All experiments were performed in compliance with the requirements of the Animal Ethics Committee at Sun Yat-sen University.

Additional information

Section Editor: Kevin S.W. Tan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Chen, S., Zheng, H. et al. Increased IL-27/IL-27R expression in association with the immunopathology of murine ocular toxoplasmosis. Parasitol Res 117, 2255–2263 (2018). https://doi.org/10.1007/s00436-018-5914-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5914-7

Keywords

Navigation