Skip to main content
Log in

piRNA-3878 targets P450 (CpCYP307B1) to regulate pyrethroid resistance in Culex pipiens pallens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Piwi-interacting RNAs (piRNAs) are a novel class of noncoding single-strand RNAs. They play an important role in the germ cell maintenance, brain development, epigenetic regulation of cancer, and antiviral function. However, little is known about the relationship between the piRNAs and insecticide resistance in mosquitoes. In this study, we reported that piRNA-3878 was related with pyrethroid resistance in Culex pipiens pallens. The expression level of piRNA-3878 was lower in both laboratory and field-collected deltamethrin-resistant (DR) strains. Overexpression of piRNA-3878 increased the susceptibility of the DR strain, while inhibiting the expression of piRNA-3878 in DS strain made the mosquitoes more resistant to deltamethrin. Furthermore, we identified that CpCYP307B1 was the target of piRNA-3878. The mosquito mortality rate was increased after downregulating the expression of CpCYP307B1. These findings revealed that piRNA-3878 could target CpCYP307B1 to regulate pyrethroid resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andriessen R, Snetselaar J, Suer RA, Osinga AJ, Deschietere J, Lyimo IN, Mnyone LL, Brooke BD, Ranson H, Knols BG, Farenhorst M (2015) Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proc Natl Acad Sci U S A 112(39):12081–12086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arensburger P, Hice RH, Wright JA, Craig NL, Atkinson PW (2011) The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs. BMC Genomics 12:606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin WS, Marko PB, Nelson DR (2009) The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. BMC Genomics 10:169

    Article  PubMed  PubMed Central  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–1103

    Article  CAS  PubMed  Google Scholar 

  • Chanda E, Mzilahowa T, Chipwanya J, Mulenga S, Ali D, Troell P, Dodoli W, Govere JM, Gimnig J (2015) Preventing malaria transmission by indoor residual spraying in Malawi: grappling with the challenge of uncertain sustainability. Malar J 14:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapadense FG, Fernandes EK, Lima JB, Martins AJ, Silva LC, Rocha WT, Santos AH, Cravo P (2015) Phenotypic and genotypic profile of pyrethroid resistance in populations of the mosquito Aedes aegypti from Goiania, Central West Brazil. Rev Soc Bras Med Trop 48(5):607–609

    Article  PubMed  Google Scholar 

  • Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z, Guo J (2012) piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 315(1):12–17

    Article  CAS  PubMed  Google Scholar 

  • Chiu TL, Wen Z, Rupasinghe SG, Schuler MA (2008) Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci U S A 105(26):8855–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui L, Lou Y, Zhang X, Zhou H, Deng H, Song H, Yu X, Xiao B, Wang W, Guo J (2011) Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 44(13):1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Dery DB, Segbaya S, Asoalla V, Amoyaw F, Amoako N, Agyeman-Budu A, Oduro A, Owusu-Agyei S, Asante KP (2016) Anopheles gambiae (Diptera: Culicidae) susceptibility to insecticides and knockdown resistance genes prior to introduction of indoor residual spraying in 11 districts in Ghana. J Med Entomol 53(6):1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Djouaka RF, Bakare AA, Coulibaly ON, Akogbeto MC, Ranson H, Hemingway J, Strode C (2008) Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria. BMC Genomics 9:538

  • Dusfour I, Zorrilla P, Guidez A, Issaly J, Girod R, Guillaumot L, Robello C, Strode C (2015) Deltamethrin resistance mechanisms in Aedes aegypti populations from three French overseas territories worldwide. PLoS Negl Trop Dis 9(11):e0004226

    Article  PubMed  PubMed Central  Google Scholar 

  • Elissa N, Mouchet J, Riviere F, Meunier JY, Yao K (1993) Resistance of Anopheles gambiae s.s. to pyrethroids in Cote d’Ivoire. Ann Soc Belg Med Trop 73(4):291–294

    CAS  PubMed  Google Scholar 

  • Fang F, Wang W, Zhang D, Lv Y, Zhou D, Ma L, Shen B, Sun Y, Zhu C (2015) The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens. Parasitol Res 114(12):4421–4429

    Article  PubMed  Google Scholar 

  • Hong S, Guo Q, Wang W, Hu S, Fang F, Lv Y, Yu J, Zou F, Lei Z, Ma K, Ma L, Zhou D, Sun Y, Zhang D, Shen B, Zhu C (2014) Identification of differentially expressed microRNAs in Culex pipiens and their potential roles in pyrethroid resistance. Insect Biochem Mol Biol 55:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joussen N, Heckel DG, Haas M, Schuphan I, Schmidt B (2008) Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, Manjunath BS, Kosik KS (2011) Identification of piRNAs in the central nervous system. RNA 17(6):1090–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei Z, Lv Y, Wang W, Guo Q, Zou F, Hu S, Fang F, Tian M, Liu B, Liu X, Ma K, Ma L, Zhou D, Zhang D, Sun Y, Shen B, Zhu C (2015) MiR-278-3p regulates pyrethroid resistance in Culex pipiens pallens. Parasitol Res 114(2):699–706

    Article  PubMed  Google Scholar 

  • Liu B, Tian M, Guo Q, Ma L, Zhou D, Shen B, Sun Y, Zhu C (2016) MiR-932 regulates pyrethroid resistance in Culex pipiens pallens (Diptera: Culicidae). J Med Entomol. doi:10.1093/jme/tjw083

  • Lv Y, Wang W, Hong S, Lei Z, Fang F, Guo Q, Hu S, Tian M, Liu B, Zhang D, Sun Y, Ma L, Shen B, Zhou D, Zhu C (2016) Comparative transcriptome analyses of deltamethrin-susceptible and -resistant Culex pipiens pallens by RNA-seq. Mol Gen Genomics 291(1):309–321

    Article  CAS  Google Scholar 

  • Noji T, Ote M, Takeda M, Mita K, Shimada T, Kawasaki H (2003) Isolation and comparison of different ecdysone-responsive cuticle protein genes in wing discs of Bombyx mori. Insect Biochem Mol Biol 33(7):671–679

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Song L, Liu C, Lv X, Li X, Jie J, Zhao D, Li D (2016) piR-55490 inhibits the growth of lung carcinoma by suppressing mTOR signaling. Tumour Biol 37(2):2749–2756

    Article  CAS  PubMed  Google Scholar 

  • Plernsub S, Saingamsook J, Yanola J, Lumjuan N, Tippawangkosol P, Sukontason K, Walton C, Somboon P (2016) Additive effect of knockdown resistance mutations, S989P, V1016G and F1534C, in a heterozygous genotype conferring pyrethroid resistance in Aedes aegypti in Thailand. Parasit Vectors 9(1):417

    Article  PubMed  PubMed Central  Google Scholar 

  • Pluess B, Tanser FC, Lengeler C, Sharp BL (2010) Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev 4:CD006657

    Google Scholar 

  • Qin Q, Li Y, Zhong D, Zhou N, Chang X, Li C, Cui L, Yan G, Chen XG (2014) Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Parasit Vectors 7:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne SH, Hemingway J, Black WC, Ranson H (2008) Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol 38(1):113–123

    Article  CAS  PubMed  Google Scholar 

  • WHO (1996) Protocols of laboratory andfield evaluation of insecticides and repellents, Geneva

  • Yan L, Yang P, Jiang F, Cui N, Ma E, Qiao C, Cui F (2012) Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families. BMC Genomics 13:609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Chen D, Duan R, Xia L, Wang J, Qurashi A, Jin P, Chen D (2007) Argonaute 1 regulates the fate of germline stem cells in Drosophila. Development 134(23):4265–4272

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Liu X, Sun Y, Ma L, Shen B, Zhu C (2015) Genomic analysis of detoxification supergene families in the mosquito Anopheles sinensis. PLoS One 10(11):e0143387

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health of the USA (NIH) (Grant No. 2R01AI075746), the National Natural Science Foundation of China (Grant No. 81171610, 81471984, and 81301458), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, W., Liu, X., Guo, J. et al. piRNA-3878 targets P450 (CpCYP307B1) to regulate pyrethroid resistance in Culex pipiens pallens . Parasitol Res 116, 2489–2497 (2017). https://doi.org/10.1007/s00436-017-5554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5554-3

Keywords

Navigation