Skip to main content
Log in

Life cycle and biology of Tristriata anatis (Digenea: Notocotylidae): morphological and molecular approaches

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Notocotylids are common digeneans parasitising birds and mammals. They have a two-host life cycle with cercariae encysting in the open. Particular life cycles remain unknown for majority of notocotylid species, including a common parasite of sea ducks Tristriata anatis. Here we resolve the life cycle of T. anatis by means of D2 LSU, ITS1 and CO1 DNA sequence analysis, showing that the first intermediate hosts for this species are periwinkles Littorina spp. Morphological descriptions of rediae and cercariae are provided for the first time, and we also supplement the existing morphological data on adults. Apart from differential diagnosis, we discuss some features of cercariae and rediae biology, geographical distribution and host range. Our molecular data confirm that genus Tristriata is monotypic and that T. anatis has circumpolar distribution. CO1 sequence analysis has shown that isolation exists between the Atlantic and Pacific populations of T. anatis, suggesting that there are geographical races. We suppose that their formation may be linked to the Last Ice Age events, when trans-Arctic bird migrations ceased and periwinkle ranges shrunk. These made transfer of parasites across the Arctic impossible, and it still has not resumed. We discuss the possible influence of host vagility and adults’ lifespan on digeneans’ potential for geographical colonisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figs. 3–9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alerstam T, Bäckman J, Gudmundsson GA, Hedenström A, Henningsson SS, Karlsson H, Strandberg R (2007) A polar system of intercontinental bird migration. Proc R Soc Lond B Biol Sci 274(1625):2523–2530

    Article  Google Scholar 

  • Andreev AV, Kondratiev AV (2001) Birds of the Koni-Pyagyn and Malkachan areas. In: Biodiversity and ecological status of the northern coast of the Sea of Okhotsk. Vladivostok, p 87–122 (in Russian)

  • Bartoli P, Jousson O, Russell-Pinto F (2000) The life cycle of Monorchis parvus (Digenea: Monorchiidae) demonstrated by developmental and molecular data. J Parasitol 86:479–489

    Article  CAS  PubMed  Google Scholar 

  • Belopolskaia MM (1952) Parasite fauna of marine waterfowl. Scientific reports of LSU 141(28):127–180 (in Russian)

  • Belopolskaia MM (1953) In: Skrjabin KI (ed) Trematodes of Animals and Man: Fundamentals of Trematodology, vol. 8. USSR Academy of Sciences Publishing, Moscow, p 132, 137, 139 (in Russian)

  • Bowles J, Hope M, Tiu WU, Liu X, McManus DP (1993) Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum. Acta Trop 55:217–229

    Article  CAS  PubMed  Google Scholar 

  • Bowles J, McManus DP (1993) Molecular variation in Echinococcus. Acta Trop 53(3):291–305

    Article  CAS  PubMed  Google Scholar 

  • Buehler DM, Baker AJ, Piersma T (2006) Reconstructing palaeoflyways of the late Pleistocene and early Holocene Red Knot Calidris canutus. Ardea-Wageningen 94(3):485

    Google Scholar 

  • Bustnes JO, Mosbech A, Sonne C, Systad GH (2010) Migration patterns, breeding and moulting locations of king eiders wintering in north-eastern Norway. Polar Biol 33:1379–1385

    Article  Google Scholar 

  • Ching HL (1991) Lists of larval worms from marine invertebrates of the Pacific Coast of North America. J Helminthol Soc Wash 58(1):57–68

    Google Scholar 

  • Chrisanfova GG, Lopatkin AA, Shestak AG, Mishchenkov VA, Zhukova TV, Akimova LN, Semyenova SK (2011) Polymorphism of the cox1 mtDNA gene from cercarial isolates of the avian schistosome Bilharziella polonica (Trematoda: Schistosomatidae) from Belarussian lakes. Russ J Genet 47(5):603–609

    Article  CAS  Google Scholar 

  • Chubrik GK (1966) Fauna and ecology of trematode larvae from the molluscs of Barents and White Seas. In: Polyanskiy GI (ed) Life cycles of parasitic worms of northern seas (Proceedings of the Murmansk Marine Biological Institute of the Kola Branch of the USSR Academy of Sciences 10(14)) Nauka, Moscow-Leningrad, p 78–159 (in Russian)

  • Combescot-Lang C (1976) Etude des trematodes parasites de Littorina saxatilis (Olivi) et de leurs effets sur cet hote. Ann Parasitol Hum Comp 51:27–36

    CAS  PubMed  Google Scholar 

  • Crandall KA, Templeon AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 34:959–969

    Google Scholar 

  • Cribb TH, Bray RA, Olson PD, Timothy D, Littlewood J (2003) Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv Parasitol 54:197–254

    Article  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dau CP, Flint PL, Petersen MR (2000) Distribution of recoveries of Steller’s Eiders banded on the lower Alaska Peninsula, Alaska. J Field Ornithol 71(3):541–548

    Article  Google Scholar 

  • Deblock S (1980) Survey of the larval Trematoda parasites of Hydrobia (Prosobranches) mollusca of the coasts of France. Parassitologia 22(1–2):1–105

  • Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7(6):183–189

    Article  CAS  PubMed  Google Scholar 

  • Duran S, Gilbert G, Turton X (2004) Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Mol Ecol 13:109–122

    Article  CAS  PubMed  Google Scholar 

  • Evans DW, Irwin SWB, Fitzpatrick SM (1997) Metacercarial encystment and in vivo cultivation of Cercaria Zebouri Stunkard 1932 (Digenea: Notocotylidae) to adults identified as Paramonostomum chabaudi Van Strydonck 1965. Int J Parasitol 27(11):1299–1304

    Article  CAS  PubMed  Google Scholar 

  • Evans NA (1985) The influence of environmental temperature upon transmission of the cercariae of Echinostoma liei (Digenea: Echinostomatidae). Parasitology 90(2):269–275

    Article  Google Scholar 

  • Evans NA, Gordon DM (1983) Experimental studies on the transmission dynamics of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 87(1):167–174

    Article  Google Scholar 

  • Filimonova LV (1971) New species of trematodes of the family Notocotylidae Lühe, 1909 from anseriform birds of Yakutia. In: Theoretical aspects of general helminthology. Nauka, Moscow, p 211–214 (in Russian)

  • Filimonova LV (1985) Trematodes of the USSR fauna. Notocotylids. Nauka, Moscow (in Russian)

  • Frame GW (1969) New definitive host, range extension, and notes on the morphology of Tristriata anatis Belopolskaia, 1953 (Trematoda, Notocotylidae) from southeast Alaska. Can J Zool 47(2):265–266

    Article  CAS  PubMed  Google Scholar 

  • Galaktionov KV (1993) Life cycles of trematodes as components of ecosystems. Apatity, Kola Scientific Centre of the Russian Academy of Sciences Publ. 190 pp (in Russian)

  • Galaktionov KV (2016) Transmission of parasites in the coastal waters of the Arctic seas and the possible effect of climate change. Zoologichesky Zhurnal 95(9):996–1016 (in Russian)

  • Galaktionov KV, Bustnes JO (1999) Distribution patterns of marine bird digenean larvae in periwinkles along the southern coast of the Barents Sea. Dis Aquat Org 37(3):221–230

    Article  CAS  PubMed  Google Scholar 

  • Galaktionov KV, Dobrovolskij A (2003) The biology and evolution of trematodes: an essay on the biology, morphology, life cycles, transmissions, and evolution of digenetic trematodes. Kluwer Academic, Boston, p 592

    Book  Google Scholar 

  • Galaktionov KV, Skírnisson K (2000) Digeneans from intertidal molluscs of SW Iceland. Syst Parasitol 47(2):87–101

    Article  CAS  PubMed  Google Scholar 

  • Galaktionov KV, Blasco-Costa I, Olson PD (2012) Life cycles, molecular phylogeny and historical biogeography of the ‘pygmaeus’ microphallids (Digenea: Microphallidae): widespread parasites of marine and coastal birds in the Holarctic. Parasitology 139:1346–1360

    Article  CAS  PubMed  Google Scholar 

  • Galaktionov KV, Dobrovolskij AA, Podvyaznaya IM (2014) Evolution of morpho-functional organization of trematode parthenogenetic generations. Zoologichesky Zhurnal 93:426–442 (in Russian)

  • Galaktionov KV, Regel KV, Atrashkevich GI (2010). Microphallus kurilensis sp. nov., a new species of microphallids from the “pygmaeus” species group (Trematoda, Microphallidae) from the coastal areas of Okhotsk and Bering Seas. Parazitologiya 44:496–507 (in Russian)

  • Galaktionov KV, Podvyaznaya IM, Nikolaev KE, Levakin IA (2015) Self-sustaining infrapopulation or colony? Redial clonal groups of Himasthla elongata (Trematoda: Echinostomatidae) in Littorina littorea (Gastropoda: Littorinidae) do not support the concept of eusocial colonies in trematodes. Folia Parasitol 62:067

    Article  Google Scholar 

  • Gérard C, Moné H, Théron A (1993) Schistosoma mansoniBiomphalaria glabrata: dynamics of the sporocyst population in relation to the miracidial dose and host size. Can J Zool 71:1880–1885

    Article  Google Scholar 

  • Ginetsinskaya TA (1968) Trematodes, their life cycles, biology and evolution. Leningrad, USSR: Nauka: 410 pp. Translated in 1988 by Amerind Publ. Co. Pvt. Ltd., New Delhi. 559 pp

  • Gonchar A, Galaktionov KV (2016) Substratum preferences in two notocotylid (Digenea, Notocotylidae) cercariae from Hydrobia ventrosa at the White Sea. J Sea Res 113:115–118

    Article  Google Scholar 

  • Granovitch A, Johannesson K (2000) Digenetic trematodes in four species of littorina from the West Coast of Sweden. Ophelia 53(1):55–65

    Article  Google Scholar 

  • Herber EC (1942) Life history studies on two trematodes of the subfamily Notocotylinae. J Parasitol 28(3):179–196

    Article  Google Scholar 

  • Hoberg EP (1992) Congruent and synchronic patterns in biogeography and speciation among seabirds, pinnipeds, and cestodes. J Parasitol 78:601–615

    Article  CAS  PubMed  Google Scholar 

  • Hoberg EP, Adams AM (1992) Phylogeny, historical biogeography, and ecology of Anophryocephalus spp. (Eucestoda: Tetrabothriidae) among pinnipeds of the Holarctic during the late Tertiary and Pleistocene. Can J Zool 70(4):703–719

    Article  Google Scholar 

  • Hoberg EP, Adams A (2000) Phylogeny, history and biodiversity: understanding faunal structure and biodiversity in the marine realm. Bull Scand Soc Parasitol 10(2):19–37

    Google Scholar 

  • James BL (1968) The distribution and keys of species in the family Littorinidae and of their digenean parasites, in the region of Dale, Pembrokeshire. Field Stud 2(5):615–650

    Google Scholar 

  • James BL (1969) The Digenea of the intertidal prosobranch, Littorina saxatilis (Olivi). J Zool Syst Evol Res 7(1):273–316

    Article  Google Scholar 

  • Johnson SR, Herter DR (1990) Bird migration in the Arctic: a review. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 22–43

    Chapter  Google Scholar 

  • Jousson O, Bartoli P (2000) The life cycle of Opecoeloides columbellae (Pagenstecher, 1863) n. comb. (Digenea, Opecoelidae): evidence from molecules and morphology. Int J Parasitol 30:747–760

    Article  CAS  PubMed  Google Scholar 

  • Jouet D, Ferté H, Depaquit J, Rudolfová J, Latour P, Zanella D, Kaltenbach ML, Léger N (2008) Trichobilharzia spp. in natural conditions in Annecy Lake, France. Parasitology Research 103(1):51–58

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Králová-Hromadová I, Špakulová M, Horáčková E, Turčeková L, Novobilský A, Beck R, Koudela B, Marinculić A, Rajský D, Pybus M (2008) Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica. J Parasitol 94(1):58–67

    Article  PubMed  Google Scholar 

  • Kuklin VV (2015) Seabird helminth fauna and parasite life cycles on the Murman Coast of the Barents Sea in winter. Dokl Biol Sci 461(5):612–615

    Google Scholar 

  • Kulachkova VG (1954) Life cycle and pathogenic importance of the eider trematode Paramonostomum alveatum (Mehlis, 1846). Transactions of General and Theme Conferences of the Zoological Institute of the USSR Academy of Sciences 4:118–122 (in Russian)

  • Kulachkova VG (1979) Helminths as a cause of common eider’s death in the top of Kandalaksha Bay. In: Uspenskiy SM (ed) Ecology and morphology of eiders in the USSR. Moscow: Nauka, p 19–25 (in Russian)

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lauckner G (1980) Diseases of Mollusca: Gastropoda. In: Kinne O (ed) Diseases of marine animals, vol I. Wiley, Chichester, pp 311–424

    Google Scholar 

  • Leigh JW, Bryant D (2015) Popart: full‐feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116

    Article  Google Scholar 

  • Leung TLF, Donald KM, Keeney DB, Koehler AV, Peoples RC, Poulin R (2009) Trematode parasites of Otago Harbour (New Zealand) soft-sediment intertidal ecosystems: life cycles, ecological roles and DNA barcodes. N Z J Mar Freshw Res 43:857–865

    Article  CAS  Google Scholar 

  • Littlewood DTJ (2006) The evolution of parasitism in flatworms. In: Maule AG, Marks NJ (eds) Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. CAB International, Wallingford, pp 1–36

    Google Scholar 

  • McCarthy AM (1999) The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118(04):383–388

    Article  PubMed  Google Scholar 

  • McDonald ME (1981) Key to trematodes reported in waterfowl, US Fish and Wildlife Service., p 142

    Google Scholar 

  • Miura O, Torchin ME, Bermingham E, Jacobs DK, Hechinger RF (2011) Flying shells: historical dispersal of marine snails across Central America. Proc R Soc B P. rspb20111599

  • Miura O, Torchin ME, Kuris AM, Hechinger RF, Chiba S (2006) Introduced cryptic species of parasites exhibit different invasion pathways. PNAS 103(52):19818–19823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollaret I, Jamieson BG, Adlard RD, Hugall A, Lecointre G, Chombard C, Justine JL (1997) Phylogenetic analysis of the Monogenea and their relationships with Digenea and Eucestoda inferred from 28S rDNA sequences. Mol Biochem Parasitol 90(2):433–438

    Article  CAS  PubMed  Google Scholar 

  • Newell CR (1986) The marine fauna and flora of the Isles of Scilly: some marine digeneans from invertebrate hosts. J Nat Hist 20(1):71–77

    Article  Google Scholar 

  • Newton I (2003) Geographical patterns in bird migration. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 211–224

    Chapter  Google Scholar 

  • Nolan MJ, Cribb TH (2004) The life-cycle of Paracardicoloides yamagutii Martin, 1974 (Digenea: Sainguinicolidae). Folia Parasitol 51:320–326

    Article  PubMed  Google Scholar 

  • Nolan MJ, Cribb TH (2005) The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Adv Parasitol 60:101–163

    Article  PubMed  Google Scholar 

  • O’Dwyer K, Faltýnková A, Georgieva S, Kosadinova A (2015) An integrative taxonomic investigation of the diversity of digenean parasites infecting the intertidal snail Austrolittorina unifasciata Gray, 1826 (Gastropoda: Littorinidae) in Australia. Parasitol Res 114(6):2381–2397

    Article  PubMed  Google Scholar 

  • Pearson JC (1972) A phylogeny of life-cycle patterns of the Digenea. Adv Parasitol 10:153–189

    Article  CAS  PubMed  Google Scholar 

  • Petersen MR, Bustnes JO, Systad GH (2006) Breeding and moulting locations and migration patterns of the Atlantic population of Steller’s Eiders Polysticta stelleri as determined from satellite telemetry. J Avian Biol 37(1):58–68

    Article  Google Scholar 

  • Pina S, Barandela T, Santos MJ, Russell-Pinto F, Rodrigues P (2009) Identification and description of Bucephalus minimus (Digenea: Bucephalidae) life cycle in Portugal: morphological, histopathological, and molecular data. J Parasitol 95(2):353–359

    Article  CAS  PubMed  Google Scholar 

  • Podlipaev SA (1979) Trematode parthenitae and larvae in the intertidal molluscs of the eastern Murman. In: Poljanskiy GI (ed) Ecological and experimental parasitology, vol. 2. Leningrad University Press, Leningrad, p 47–101 (in Russian)

  • Prinz K, Kelly TC, O’Riordan RM, Culloty SC (2010) Occurrence of macroparasites in four common intertidal molluscs on the south coast of Ireland. Mar Biodivers Rec 3:e89

    Article  Google Scholar 

  • Reid DG (1996) Systematics and evolution of Littorina. The Ray Society, London

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothschild M (1938) Notes on the classification of cercariae of the super-family Notocotyloidea (Trematoda), with special reference to the excretory system. Novitates Zoologicae 61(2):75-83.

  • Sewell RBS (1922) Cercariae indicae. Ind J Med Res Suppl 10:1–360

    Google Scholar 

  • Skála V, Bulantová J, Walker AJ, Horák P (2014) Insights into the development of Notocotylus attenuatus (Digenea: Notocotylidae) in Lymnaea stagnalis: from mother sporocyst to cercariae. Parasitol Int 63(1):94–99

    Article  PubMed  Google Scholar 

  • Skírnisson K, Eydal M, Gunnarsson E, Hersteinsson P (1993) Parasites of the arctic fox (Alopex lagopus) in Iceland. J Wildl Dis 29(3):440–446

    Article  PubMed  Google Scholar 

  • Stunkard HW (1932) Some larval trematodes from the coast in the region of Roscoff, Finistere. Parasitology 24(3):321–343

    Article  Google Scholar 

  • Stunkard HW (1970) The marine cercariae of the woods hole Massachusetts region. Biol Bull 138(1):66–76

  • Stunkard HW (1983) The marine cercariae of the woods hole, Massachusetts region, a review and a revision. Biol Bull 164(2):143–162

  • Théron A, Moné H, Gérard C (1992) Spatial and energy compromise between host and parasite: the Biomphalaria glabrataSchistosoma mansoni system. Int J Parasitol 22:91–94

    Article  PubMed  Google Scholar 

  • Théron A, Pages J-R, Rognon A (1997) Schistosoma mansoni: distribution patterns of miracidia among Biomphalaria glabrata snail as related to host susceptibility and sporocyst regulatory processes. Exp Parasitol 85:1–9

    Article  PubMed  Google Scholar 

  • Thieltges DW, Ferguson MA, Jones CS, Noble LR, Poulin R (2009) Biogeographical patterns of marine larval trematode parasites in two intermediate snail hosts in Europe. J Biogeogr 36(8):1493–1501

    Article  Google Scholar 

  • Troitsky SL (1970) The general review of Pleistocene marine faunae at the northern coast of Eurasia. In: Belov NA et al. (eds) The Arctic Ocean and its coasts in Cenozoic. Leningrad: Hydrometeoisdat, p 179–185 (in Russian)

  • Tsimbaljuk AK, Kulikov VV, Ardasheva NV, Tsimbaljuk EM (1978) Helminths of invertebrates from the intertidal zone of the Iturup island. In: Kusakin OG (ed) Fauna and vegetation of the shelf of the Kuril islands. Moscow: Nauka, p 69–126 (in Russian)

  • Webster MS, Marra PP, Haig SM, Bensch S, Holmes RT (2002) Links between worlds—unraveling migratory connectivity. Trends Ecol Evol 17:76–83

    Article  Google Scholar 

  • Werding B (1969) Morphologie, Entwiklung und Ökologie digener Trematoden-Larven der Strandschneke Littorina littorea. Mar Biol 3:306–333

    Article  Google Scholar 

  • Zarkhidze VS (1970) The history of development of marine mollusc faunae in the Atlantic sector of Arctic in the late Cenozoic. In: Belov NA et al. (eds) The Arctic Ocean and its coasts in Cenozoic. Leningrad: Hydrometeoisdat, p 186–194 (in Russian)

Download references

Acknowledgments

This study was funded by the Russian Science Foundation (grant number 14-14-00621). We are grateful to Karl Skírnisson, Andrei Granovitch, Daria Aleshkina and Ksenia Volovik for providing samples from certain locations, and Damien Jouet, above that, for his great assistance in parts of the work. Field research was largely based at the White Sea Biological Station of the Zoological Institute of the Russian Academy of Sciences (ZIN RAS), and molecular research at the Laboratory of molecular systematics ZIN RAS. Part of the sequencing was performed at the research resource centre “Molecular and cell technologies” (St Petersburg State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Gonchar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonchar, A., Galaktionov, K.V. Life cycle and biology of Tristriata anatis (Digenea: Notocotylidae): morphological and molecular approaches. Parasitol Res 116, 45–59 (2017). https://doi.org/10.1007/s00436-016-5260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5260-6

Keywords

Navigation