Skip to main content
Log in

Photosensitizers in the fight against ticks: safranin as a novel photodynamic fluorescent acaricide to control the camel tick Hyalomma dromedarii (Ixodidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Ticks transmit more pathogen species than any other group of blood-feeding arthropods worldwide, affecting humans, livestock, and companion animals. Hyalomma dromedarii is the predominant tick species infesting camels, and its effective control is of pivotal importance. In this research, we compared the phytoefficacy of safranin (SF), a fluorescent dye applied as an acaricide for the first time, to that of tetramethrin (TM) against engorged females of H. dromedarii through in vitro immersion bioassays. Furthermore, the effect of SF exposure was evaluated on the reproductive potential of surviving tick females. Different concentrations of SF (0.03, 0.06, 0.3, 1, and 4 % w:v) and TM (0.03, 0.13, 0.5, 2, and 4 %) were prepared in distilled water and administered to engorged females of H. dromedarii. SF-treated ticks were illuminated with a light source for 30 min post-treatment (PT). Photophysical properties of SF were studied, and the relative efficacy of the used light source and sunlight was calculated. Results showed that the minimum least concentration that causes 100 % acaricidal effect was 4 % PT with SF and TM, for 8 and 48 h, respectively. LC50 values 8 and 24 h PT were 0.08, 0.03 and 0.78, 0.20 %, respectively. Comparing LC50 and LC90 2 h PT, SF was 33 and 22 times more potent than TM. LT50 of 4 % SF and TM were 0.80 and 2.17 h, respectively. Treatment with the lowest concentrations of SF and TM induced reduction of the number of ovipositing females, eggs per female, ticks laying viable eggs, and hatched eggs. Overall, our results highlighted that SF is highly effective if compared to TM, allowing use to candidate it for the development of novel and safer acaricides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Ghaffar F, Al-Quraishy S, Mehlhorn H (2015) Length of tick repellency depends on formulation of the repellent compound (Icaridin = Saltidin®): tests on Ixodes persulcatus and Ixodes ricinus placed on hands and clothes. Parasitol Res 114:3041–3045

    Article  PubMed  Google Scholar 

  • Abdelsalam SA, Korayem AM, Elsherbini EAM, Abdel-Aal AA, Mohamed DS (2014) Photosensitizing effects of hematoporphyrin dihydrochloride against the flesh fly Parasarcophaga argyrostoma (Diptera: Sarcophagidae). Fla Entomol 97(4):1662–1670

    Article  CAS  Google Scholar 

  • Abdel-Shafy S, Nasr SM, Abdel-Rahman HH, Habeeb SM (2011) Effect of various levels of dietary Jatropha curcas seed meal on rabbits infested by the adult ticks of Hyalomma marginatum marginatum I. Animal performance, anti-tick feeding and haemogram. Trop Anim Health Pro 43(2):347–357

    Article  Google Scholar 

  • Abdel-Shafy S, Zayed AA (2002) In vitro acaricidal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature, and adult stages of Hyalomma anatolicum excavatum (Ixodoidea: Ixodidae). Vet Parasitol 106:89–96

    Article  CAS  PubMed  Google Scholar 

  • Alahmed AM, Kheir SM (2003) Life cycle and survival of Hyalomma dromedarii (Acari: Ixodidae) under laboratory conditions. Agr Mar Sci 8(1):11–14

    Google Scholar 

  • Albani JR (2004) Structure and dynamics of macromolecules: absorption and fluorescence studies, Laboratory of Molecular Biophysics University of Science and Technology of Lille, Villeneuve d, Ascq, France. Elsevier inc., London, p 58

    Google Scholar 

  • Ali AA, Fahmy MFM, Edress NM (1988) Pathologic and clinicopathologic studies on anti-parasitic drug ivermectin toxicosis in albino rats. Zagazig Vet J 16:19–31

    Google Scholar 

  • Al-Rajhy DH, Alahmed AM, Hussein HI, Kheir SM (2003) Acaricidal effects of cardiac glycosides, azadirachtin and neem oil against the camel tick, Hyalomma dromedarii (Acari: Ixodidae). Pest Manag Sci 59:1250–1254

    Article  CAS  PubMed  Google Scholar 

  • Anderson JF (2002) The natural history of ticks. Med Clin N Am 86:205–218

    Article  PubMed  Google Scholar 

  • Apanaskevich DA, Schuster AL, Horak IG (2008) The genus Hyalomma: VII. Redescription of all parasitic stages of H. (Euhyalomma) dromedarii and H. (E.) schulzei (Acari: Ixodidae). J Med Entomol 45:817–831

    Article  PubMed  Google Scholar 

  • Aref NB (2010) Effect of rose bengal on Hylemyia antiqa (Meigen) (Diptera: Anthomyiidae). J Am Sci 6(8):27–30

    Google Scholar 

  • Baptista MS, Wainwright M (2011) Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz J Med Biol Res 44:1–10

    Article  CAS  PubMed  Google Scholar 

  • Barbieri A (1928) Sensibilizadores fluorescentes como larvicidas. Action fotodynamica de la luz Riv Malariol 7:456–463

    Google Scholar 

  • Ben Amor T, Bortolotto L, Jori G (1998a) Porphyrins and related compounds as photoactivable insecticides. 2. Phototoxic activity of meso-substituted porphyrins. Photochem Photobiol 68:314–318

    Article  CAS  Google Scholar 

  • Ben Amor T, Tronchin M, Bortolotto L, Verdiglione R, Jori G (1998b) Porphyrins and related compounds as photoactivable insecticides. 1. Phototoxic activity of hematoporphyrin toward Ceratitis capitata and Bactrocera oleae. Photochem Photobiol 67:206–211

    Article  CAS  PubMed  Google Scholar 

  • Ben Amor T, Jori G (2000) Sunlight activated insecticides: historical background and mechanisms of phototoxic activity. Insect Biochem Molec 30:915–925

    Article  CAS  Google Scholar 

  • Ben Amor T, Bortolotto L, Jori G (2000) Porphyrins and related compounds as photoactivatable insecticides. 3. Laboratory and field studies. Photochem Photobiol 71:123–127

    Google Scholar 

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754

    Article  PubMed  Google Scholar 

  • Benelli G, Pavela R, Canale A, Mehlhorn H (2016a) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res. doi: 10.1007/s00436-016-5095-1

  • Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016b) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115:2131--2137

  • Bhan S, Mohan L, Srivastava CN (2015) Photosensitization of nanoencapsulated Temephos and Cuscuta reflexa combination on mosquito larvae. Int J Pharm Res Bio Sci 4:94–110

  • Bhattacarya B, Sarkar SK, Mukherjee N (2003) Organochloride pesticide residues in sediments of a tropical mangrove estuary, India; implications for monitoring. Environ Int 1052:1–6

    Google Scholar 

  • Bhattacharyulu Y, Chaudhri RP, Gill BS (1975) Transstadial transmission of Theileria annulata through common ixodid ticks infesting Indian cattle. Parasitology 71:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bissinger BW, Roe MR (2010) Tick repellents: past, present, and future. Pesticid Biochem Physiol 96:63–79

    Article  CAS  Google Scholar 

  • Bradbury SP, Coats JR (1989) Comparative toxicology of the pyrethroid insecticides. Rev Environ Contamin Toxicol 108:133–177

    CAS  Google Scholar 

  • Buda V, Luksiene Z, Radziute S, Kuricik N, Jursenas S (2006) Search for photoinsecticides: effect of hematoporphyrin dimethy ether on leaf mining pest Liriomyza bryoniae (Diptera: Agromyzidae). Agron Res 4:141–146

    Google Scholar 

  • Centers for Disease Control and Prevention (2016) Tickborne diseases of the United States, http://www.cdc.gov/ticks/diseases/. Updated: February 8, 2016

  • Cetin H, Cilek JE, Oz E, Aydin L, Deveci O, Yanikoglu A (2009) Comparative efficacy of spinosad with conventional acaricides against hard and soft tick populations from Antalya, Turkey. Vet Parasitol 163:101–104

    Article  CAS  PubMed  Google Scholar 

  • Cooper KM, Whelan M, Danaher M, Kennedy DG (2011) Stability during cooking of anthelmintic veterinary drug residues in beef. Food Addit Contam, Part A 28:155–165

    Article  CAS  Google Scholar 

  • Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tick-borne diseases: a One Health perspective. Tr Parasitol 28:437–446

    Article  Google Scholar 

  • Deplazes T, Eckert J, von Samson-Himmelstjerna G, Zahner H (2013) Textbook of parasitology of veterinary medicine, 3rd edn. Enke, Stuttgart

    Google Scholar 

  • Dondji B, Duchon S, Diabaté A, Corbel V, Hougard JM, Santus R, Schrevel J (2005) Assessment of laboratory and field assays of sunlight-induced killing of mosquito larvae by photosensitizers. J Med Entomol 42:652–656

    Article  CAS  PubMed  Google Scholar 

  • El Hakim ME, Shahein YE, Abdel-Shafy S, Abouelella AMK, Hamed RR (2011) Evaluation of glycoproteins purified from adult and larval camel ticks (Hyalomma dromedarii) as a candidate vaccine. J Ve Sci 12:243–249

    Article  Google Scholar 

  • El-Azazy OME, Lucas SF (1996) The sterilizing effect of pour-on flumethrin on the camel thick, Hyalomma dromedarii (Acari: Ixodidae). Vet Parasitol 61:339–343

    Article  CAS  PubMed  Google Scholar 

  • Elghali A, Hassan SM (2009) Ticks (Acari: Ixodidae) infesting camels (Camelus dromedarius) in Northern Sudan. Onderstepoort J Vet Res 76:177–185

    Article  CAS  PubMed  Google Scholar 

  • Elghali A, Hassan SM (2010) Drop-off rhythms and survival periods of Hyalomma dromedarii (Acari: Ixodidae) fed on camels (Camelus dromedarius) in the Sudan. Vet Parasitol 170:302–306

    Article  CAS  PubMed  Google Scholar 

  • El-Nahas AF, El-Ashmawy IM (2008) Effect of ivermectin on male fertility and its interaction with P-glycoprotein inhibitor (verapamil) in rats. Environ Toxicol Pharmacol 26:206–211

    Article  CAS  PubMed  Google Scholar 

  • Fadel M, Kassab K (2011) Evaluation of the photostability and photodynamic efficacy of rose bengal loaded in multivesicular liposomes. Trop J Pharm Res 10:289–297

    Article  CAS  Google Scholar 

  • Fairbrother TE, Essig HW, Combs RL, Heitz JR (1981) Toxic effects of rose bengal and erythrosin B on three life stages of the face fly Musca autumnalis. Environ Entomol 10:506–510

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, Cambridge, p 303

    Google Scholar 

  • Galarini R, Saluti G, Moretti S, Giusepponi D, Dusi G (2013) Determination of macrocyclic lactones in food and feed. Food Addit Contamin A 30:1068–1079

    Article  CAS  Google Scholar 

  • George JE, Pound JM, Davey RB (2004) Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology 129:S353–S366

    Article  CAS  PubMed  Google Scholar 

  • Habeeb SM, Abdel-Shafy S, Youssef AA (2007) Light, scanning electron microscopy and SDS-PAGE studies on the effect of the essential oil, Citrus sinensis var. balady on the embryonic development of camel tick Hyalomma dromedarii (Koch, 1818) (Acari: Ixodidae). Pakistan J Biol Sci 10:1151–1160

    Article  CAS  Google Scholar 

  • Hasan T, Ortel B, Moor A, Pogue B (2003) Photodynamic therapy of cancer. In: Pollock R, Weichselbaum R, Gansler T, Holland JE, Frei E, Bast R, Kufe D (eds) Cancer medicine, 6th edn. Decker Inc, Hamilton, pp 605–622

    Google Scholar 

  • Hassanain MA, EL Garhy MF, Abdel-Ghaffará FA, El-Sharaby A, Abdel Megeed KN (1997) Biological control studies of soft and hard ticks in Egypt. I. The effect of Bacillus thuringiensis varieties on soft and hard ticks (ixodidae). Parasitol Res 83:209–213

    Article  CAS  PubMed  Google Scholar 

  • Hecht E (2004) Optics, 4th edn. Pearson Education, Inc, India

    Google Scholar 

  • Heitz J, Mangan RL, Moreno DS (1997) Phototoxic insecticidal composition and method for controlling insect populations, US 5676959 A, US 08/543,475, https://www.google.com/patents/US5676959

  • Helleck AM, Hartberg WK (1999) Site of Photofrin II photosensitization in larvae of Eretmapodites quinquevittatus Theobald. J Am Mosq Control Assoc 15:437–445

    CAS  PubMed  Google Scholar 

  • Hovhannisyan VA, Mathevosyan MB, Elbakyan EG (2005) Temperature effects in photodynamic processes, Proc. SPIE 5689, Optical methods for tumor treatment and detection: mechanisms and techniques in photodynamic therapy XIV, 205 doi: 10.1117/12.586132

  • Jenkins FA, White HE (1976) Fundamentals of optics, 4th edn. McGraw-Hill, Inc, London

    Google Scholar 

  • Jori G (1985) Molecular and cellular mechanisms in photomedicine. In: Benssasson RV, Jori GEL, Truscott TG (eds) Primary photoprocesses in biology and medicine. Plenum Press, New York, pp 349–355

    Chapter  Google Scholar 

  • Jori G, Magaraggia M, Fabris C, Soncin M, Camerin M, Tallandini L, Coppellotti O, Guidolin L (2011) Photodynamic inactivation of microbial pathogens: disinfection of water and prevention of water-borne diseases. J Environ Pathol Toxicol Oncol 30:261–271

    Article  CAS  PubMed  Google Scholar 

  • Kadima IT, Mahgouba O, Purchasb RW (2008) A review of the growth, and of the carcass and meat quality characteristics of the one-humped camel (Camelus dromedaries). Meat Sci 80:555–569

    Article  Google Scholar 

  • Khater HF (2003) Biocontrol of some insects, Ph.D. Dissertation. Zagazig University, Benha Branch, Egypt

    Google Scholar 

  • Khater HF (2011) Ecosmart biorational insecticides: alternative insect control strategies. In: Perveen F (ed) Advances in integrated pest management. InTech, Croatia, pp 17–60

    Google Scholar 

  • Khater HF (2012) Prospects of botanical biopesticides in insect pest management. Pharmacologia 3:641–656

    Article  Google Scholar 

  • Khater HF (2013) Bioactivity of essential oils as green biopesticides: recent global scenario. In: Govil JN, Bhattacharya S (eds) Essentials oils II. Recent progress in medicinal plants, vol 37. Studium, Houston, pp 151–218

    Google Scholar 

  • Khater HF (2014) Bioactivities of some essential oils against the camel nasal botfly, Cephalopina titillator. Parasitol Res 113:593–605

    Article  PubMed  Google Scholar 

  • Khater HF, Ramadan MY (2007) The acaricidal effects of peracetic acid against Boophilus annulatus and Argas persicus. Acta Sci Vet 35:29–40

    Google Scholar 

  • Khater HF, Hendawy NI (2014) Photoxicity of rose bengal against the camel tick Hyalomma dromedarii. Int J Vet Sci 3(2):78–86

    Google Scholar 

  • Khater HF, Ramadan MY, El- Madawy RS (2009) The lousicidal, ovicidal, and repellent efficacy of some essential oils against lice and flies infesting water buffaloes in Egypt. Vet Parasitol 164:257–266

    Article  CAS  PubMed  Google Scholar 

  • Khater HF, Seddiek SA, El-Shorbagy MM, Ali MA (2013a) The acaricidal efficacy of peracetic acid and deltamethrin against the fowl tick, Argas persicus, infesting laying hens. Parasitol Res 112:259–269

    Article  PubMed  Google Scholar 

  • Khater HF, Ramadan MY, Abdel Mageid AD (2013b) In vitro control of the camel nasal botfly, Cephalopina titillator, with doramectin, lavender, camphor, and onion oils. Parasitol Res 112:2503–2510

    Article  PubMed  Google Scholar 

  • Klafke GM, Sabatini GA, de Albuquerque TA, Martins JR, Kemp DH, Miller RJ, Schumaker TTS (2006) Larval immersion tests with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from State of Sao Paulo, Brazil. Vet Parasitol 142(3–4):386–390

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Ren Q, Li Y, Liu J, Niu Q, Yin H, Meng Q, Guan G, Luo J (2015) The efficacies of 5 insecticides against hard ticks Hyalomma asiaticum, Haemaphysalis longicornis and Rhipicephalus sanguineus. Exp Parasitol 157:44–47

    Article  CAS  PubMed  Google Scholar 

  • Lucantoni L, Magaraggia M, Lupidi G, Ouedraogo RK, Coppellotti O et al (2011) Novel, meso-substituted cationic porphyrin molecule for photo-mediated larval control of the dengue vector Aedes aegypti. PLoS Negl Trop Dis 5(2):e1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukðienë Þ, Bûda V, Radþiutë S (2005) Effects of visible-light-activated hematoporphyrin dimethyl ether on the survival of leafminer Liriomyza bryoniae. Ekologija 3:17–21

    Google Scholar 

  • Luksiene Z, Kurilcik N, Jursenas S, Radziute S, Buda V (2007) Towards environmentally and human friendly insect pest control technologies: photosensitization of leaf miner flies, Liriomyza bryoniae. J Photochem Photobiol B Biol 89:15–21

    Article  CAS  Google Scholar 

  • Lumaret J, Errouissi F (2002) Use of anthelmintics in herbivores and evaluation of risks for the non-target fauna of pastures. Vet Res 33:547–562

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Mischke S, Schroder RFW (1998) Compatibility of photoactive dyes with insect biocontrol agents. Biocontrol Sci Technol 8(4):501–508

    Article  Google Scholar 

  • Marzouk AS, Swelim HH, Montasser AA, Gadallah AL (2004) Biological effects of ivermectin on the fowl tick Argas (Persicargas) persicus (Oken) (Ixodoidea: Argasidae). Egyp J Hosp Med 17:93–105

    CAS  Google Scholar 

  • Mehlhorn H (2015) Encyclopedia of parasitology, 4th edn. Springer, New York

    Google Scholar 

  • Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

    Article  PubMed  Google Scholar 

  • Mukhebi AW, Chamboko T, CJ O’C, Peter TF, Kruska RL, Medley GF, Mahan SM, Perry BD (1999) An assessment of the economic impact of heartwater (Cowdria ruminantium infection) and its control in Zimbabwe. Vet Med 39(3):173–189

    CAS  Google Scholar 

  • Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363--1373

  • Nchu F, Magano SR, Eloff JN (2005) In vitro investigation of the toxic effects of extracts of Allium sativum bulbs on adults of Hyalomma marginatum rufipes and Rhipicephalus pulchellus. J S Afr Vet Assoc 76(2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Nolan J (1990) Acaricide resistance in single and multi-host ticks and strategies for control. Parassitologia 32:145–153

    CAS  PubMed  Google Scholar 

  • Pfäffle M, Littwin N,Muders SV, Petney TN (2013) The ecology of tickborne diseases. Int J Parasitol 43:1059–1077

  • Pujol-Lereis LM, Massaldi A, Rabossi A, Quesada-Allué LA (2010) Photosensitizing effect of hematoporphyrin IX on immature stages of Ceratitis capitata (Diptera: Tephritidae). Photochem Photobiol 86:639--44

  • Rebeiz CA, Juvik JA, Rebeiz CC, Bouton CE, Gut LT (1990) Porphyric insecticides 2. 1, 10 phenanthroline, a potent porphyric insecticide modulator. Pestic Biochem Physiol 36:201–207

    Article  CAS  Google Scholar 

  • Rebeiz CA, Montazaer-Zouhour A, Mayasich JM, Tipathy BC, Wu SM, Rebeiz CC (1987) Porphyric insecticides. In: Heitz JR, Downum KR (eds) Light activated pesticides. ACS, Washington, DC, pp 295–328, ACSSymposium Series 339

    Chapter  Google Scholar 

  • Sajid MS, Iqbal Z, Khan MN, Muhammad G (2009) In vitro and in vivo efficacies of ivermectin and cypermethrin against the cattle tick Hyalomma anatolicum anatolicum (Acari: Ixodidae). Parasitol Res 105(4):1133–1138

    Article  PubMed  Google Scholar 

  • Salama EM, Abdel-Kader MH, Jori G (2002) Site of action of hematoporphyrin (a photo-activated insecticide) in Culex pipiens larvae. Egyp J Biol 4:133–141

    Google Scholar 

  • Seddiek SA, Khater HF, El-Shorbagy MM, Ali MM (2013) The acaricidal efficacy of aqueous neem extract and ivermectin against Sarcoptes scabiei var. cuniculi in experimentally infested rabbits. Parasitol Res 112:2319–2330

    Article  PubMed  Google Scholar 

  • Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: critical review and future research needs. Environ Health Perspect 113(2):123–136

    Article  CAS  PubMed  Google Scholar 

  • Sheikh N (2011) Health and insecticides in advances in integrated pest management. In: Perveen F (ed) Advances in integrated pest management. InTech, Croatia, pp 143–152

    Google Scholar 

  • Smijs TGM, Nirvard MJ, Schuitmaker HJ (2004) Development of a test system for mutagenicity of photosensitizers using Drosophila melanogaster. Photochem Photobiol 79:332–338

    Article  CAS  PubMed  Google Scholar 

  • Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D et al (2002) Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicol 171:3–59

    Article  CAS  Google Scholar 

  • Sonenshine DE, Roe RM (2014) Biology of ticks, vol 2, 2nd edn. Oxford University Press, New York, USA

    Google Scholar 

  • Sonenshine DE, Lane RS, Nicholson WL (2002) Ticks (Ixodida). In: Mullen G, Durden L (eds) Medical and veterinary entomology. Academic Press, San Diego, pp 517–558

    Chapter  Google Scholar 

  • Sun M, Ren Q, Guan G, Liu Z, Ma M et al (2011) Virulence of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus to the engorged female Hyalomma anatolicum anatolicum tick (Acari: Ixodidae). Vet Parasitol 180:389–393

    Article  PubMed  Google Scholar 

  • Tonnesen HH (2004) Photostability of drugs and drug formulations, 2nd edn. CRC, Florida

    Book  Google Scholar 

  • van Straten M, Jongejan F (1993) Ticks (Acari: Ixodidae) infesting the Arabian camel (Camelus dromedarius) in the Sinai, Egypt with a note on the acaricidal efficacy of ivermectin. Exp Appl Acaro 17(8):605–616

    Article  Google Scholar 

  • Wainwright M (2009) Photosensitizers in biomedicine, 1st edn. Wiley, Oxford

    Book  Google Scholar 

  • Webb EC, David M (2002) The efficacy of neem seed extract (Azadirachta indica) to control tick infestation in Tswana, Simmentaler and Brahman cattle. S Afr J Anim Sci 32:1–6

    Article  Google Scholar 

Download references

Acknowledgments

Prof. Dr. Heinz Mehlhorn and two anonymous reviewers improved an earlier version of our manuscript. The authors are grateful to Prof. Dr. Azza A. Moustafa (Research Institute of Medical Entomology, Egypt), Dr. Mohamed Hafez (Plant Pathology Department, Faculty of Agriculture, Benha University, Egypt) and Dr. Ahmed Radwan (Parasitology Department, Faculty of Veterinary Medicine, Benha University, Egypt) for their valuable advices and help. Furthermore, we would like to thank Dr. Tarek Y. Elrasasi (Physics Department, Faculty of Science, Benha University) for this kind assistance. The macrograph of H. dromedarii was kindly provided by Ms. Maria Fremlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest. G. Benelli is an Editorial Board Member of Parasitology Research. This does not alter the authors’ adherence to all the Parasitology Research policies on sharing data and materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khater, H., Hendawy, N., Govindarajan, M. et al. Photosensitizers in the fight against ticks: safranin as a novel photodynamic fluorescent acaricide to control the camel tick Hyalomma dromedarii (Ixodidae). Parasitol Res 115, 3747–3758 (2016). https://doi.org/10.1007/s00436-016-5136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5136-9

Keywords

Navigation