Skip to main content
Log in

Larvae to adult: skin ontogeny of Physalaemus ephippifer (Anura: Leptodactylidae)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Throughout metamorphic development until adulthood, amphibians have important integumentary adaptations that maintain their physiological needs and protection against predation. The evolution of these strategies in the subfamily Leiuperinae has been elucidated in recent years. In this sense, the knowledge about Physalaemus ephippifer’s skin features can corroborate the ontogenetic changes of these characteristics in the clade. The aims of this work were to study the ontogeny of the skin of P. ephippifer from tadpole to adult. We collected foam nests in temporary ponds as well as adult individuals in a forest fragment. In the laboratory, the animals were classified by stage development, euthanized, and fixed. Sections of the dorsolateral, lumbar, and femoral portions were dissected from the adult individuals. Samples were submitted to histological processing for light microscopy and scanning electron microscopy. In premetamorphosis phase, granular glands development is absent and secretory cells are present. In prometamorphosis, the development of the first glandular rudiments without secretion production begins, also xanthophores. During metamorphosis, mucous glands differentiated before granular glands. Until late metamorphosis ciliated cells persist and epidermis changes to an adultlike. In adults, granular glands show polymorphism with different distributions in the body, despite not having macroglandular structures. In addition, P. ephippifer individuals have few epidermal projections and cryptic coloration. Our results show that despite sharing a few morphological structures with other specimens of the Leiuperinae subfamily, the characteristics present in individuals of P. ephippifer are appropriate to the niche occupied and consistent with the changes that occur throughout their lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors states that all data supporting the findings of this study are available within the paper.

References

  • Alibardi L (2003) Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes. J Exp Zool (mol Dev Evol) 298:12–41

    Article  Google Scholar 

  • Alibardi L (2006) structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives. Int Rev Cytol 253:177–259

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L (2009) Embryonic keratinization in vertebrates in relation to land colonization. Acta Zoologica 90:1–17

    Article  Google Scholar 

  • Allen BM (1929) The influence of the thyroid gland and hypophysis upon growth and development of amphibian larvae. The Quaterly Rev Biol 3:325–352

    Article  Google Scholar 

  • Altig R, Johnston GF (1989) Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol Monogr 3:81–109

    Article  Google Scholar 

  • AmphibiaWeb (2022). University of California. Retrieved from https://amphibiaweb.org

  • Antoniazzi MM, Marilho-Fontana PL, Normura F, Azevedo HB, Pimenta DC, Sciani JM, Carvalho FR, Rossa-Feres DC, Jared C (2022) Reproductive behaviour, cutaneous morphology, and skin secretion analysis in the anuran Dermatonotus muelleri. Iscience 15:1–21

    Google Scholar 

  • Bernabò I, Bonacci A, Coscarelli F, Tripepi M, Brunelli E (2013) Effects of salinity stress on Bufo balearicus and Bufo bufo tadpoles: tolerance, morphological gill alterations and Na+/K+-ATPase localization. Aquat Toxicol 132–133:119–133

    Article  PubMed  Google Scholar 

  • Borges Júnior VNT & Rocha CFD (2013) Tropical Tadpole assemblages: which factors affect their structure and distribution? Oecologia Australis 17:217–228

    Article  Google Scholar 

  • Briolat ES, Burdfield-Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM (2019) Diversity in warning coloration: selective paradox or the norm? Biol Rev 94:388–414

    Article  PubMed  Google Scholar 

  • Chammas SM, Carneiro SM, Ferro RS, Antoniazzi MM, Jared C (2015) Development of integument and cutaneous glands in larval, juvenile and adult toads (Rhinella granulosa): A morphological and morphometric study. Acta Zoologica 96:460–477

    Article  Google Scholar 

  • Cruz JC, Fabrezi M (2019) Histology and microscopic anatomy of the thyroid gland during the larval development of Pseudis platensis (Anura, Hylidae). J Morphol 281:122–134

    Article  PubMed  Google Scholar 

  • de Vito J (1997) The effects of predation on anuran metamorphosis. Dissertation, Oregon State University 1–56

  • Delfino G, Brizzi R, Kracke-Berndorff R, Alvarez B (1998a) Granular gland dimorphism in the skin of Melanophryniscus stelzneri (Anura: Bufonidae). J Morphol 237:19–32

    Article  CAS  PubMed  Google Scholar 

  • Delfino G, Brizzi R, Alvarez BB, Kracke-Berndorff R (1998b) Granular cutaneous glands in Phyllomedusa hypochondrialis (Anura, Hylidae): secretory patterns during ontogenesis. Tissue Cell 30:30–40

    Article  CAS  PubMed  Google Scholar 

  • Delfino G, Brizzi R, Alvarez BB, Gentili M (1999) Granular cutaneous glands in the frog Physalaemus biligonigerus (Anura, Leptodactylidae): comparison between ordinary granular and “inguinal” glands. Tissue Cell 31:576–586

    Article  CAS  PubMed  Google Scholar 

  • Delfino G, Giachi F, Malentacchi C, Nosi D (2015) Ultrastructural evidence of granular gland polymorphism in the skin of the tungara frog Engystomops pustulosus (Anura leptodactylidae). Anat Rec 298:1659–1667

    Article  Google Scholar 

  • Endler JA, Mappes J (2004) predator mixes and the conspicuousness of aposematic signals. Am Nat 163:532–547

    Article  PubMed  Google Scholar 

  • Espanha J, de Vasconcelos MF, Eterovick PC (2016) The role of tadpole coloration against visually oriented predators. Behav Ecol Sociobiol 70:255–267

    Article  Google Scholar 

  • Fabrezi M, Quinzio SI, Goldberg J (2010) The ontogeny of Pseudis platensis (Anura, Hylidae): heterochrony and the effects of larval development on postmetamorphic life. J Morphol 271:496–510

    Article  PubMed  Google Scholar 

  • Felsemburgh FA, Carvalho-e-Silva SP, Brito-Gitirana L (2007) Morphological characterization of the anuran integument of the Proceratophrys and Odontophrynus genera (Amphibian, Anuran, Leptodactylidae). Micron 28:439–445

    Article  Google Scholar 

  • Fenoglio C, Grosso A, Boncompagni E, Milanesi G, Gandini C, Barni S (2006) Morphofunctional evidence of changes in principal and mitochondria-rich cells in the epidermis of the frog Rana kl. esculenta living in a polluted habitat. Arch Environ Contam Toxicol 51:690–702

    Article  CAS  PubMed  Google Scholar 

  • Ferraro DP, Topa PE, Hermida GN (2013) Lumbar glands in the frog genera Pleurodema and Somuncuria (Anura: Leiuperidae): histological and histochemical perspectives. Acta Zoologica 94:44–57

    Article  Google Scholar 

  • Formanowicz DR, and Brodie ED (1982) Relative palatabilities of members of a larval amphibian community. Source 91–97

  • Fox H (1981) Cytological and morphological changes during amphibian metamorphosis Cell change during metamorphosis. American Society of Ichthyologists and Herpetologists 1:327–362

  • Gomes FR, Rezende EL, Grizante MB, Navas CA (2009) The evolution of jumping performance in anurans: Morphological correlates and ecological implications. Eur Soc Evolut Biol 22:1088–1097

    Article  CAS  Google Scholar 

  • Guimarães ISC, Hemnani M, Kaefer IL, da Silva Pires TH (2021) Fear of the dark: substrate preference in Amazonian tadpoles. Acta Ethologica 24:177–183

    Article  Google Scholar 

  • Haddad CFB, Prado CPA (2005) Reproductive modes in frogs and their unexpected diversity in the atlantic forest of. Brazil 55:207–217

    Google Scholar 

  • Hayes TB, Gill TN (1995) Hormonal regulation of skin gland development in the toad Bufo boreas: The role of the thyroid hormones and corticosterone. Gen Comp Endocrinol 99:161–168

    Article  CAS  PubMed  Google Scholar 

  • Hero JM, Magnusson WE, Rocha CFD, Catterall CP (2001) Antipredator defenses influence the distribution of amphibian prey species in the central amazon rain forest. Tissue Cell 31:131–141

    Google Scholar 

  • Ishitsuka Y, Ogawa T, Roop D (2020) The KEAP1/NRF2 signaling pathway in keratinization. Antioxidants 9:1–24

    Article  Google Scholar 

  • Katz U, Gabbay S (2010) Mitochondria-rich cells in amphibians skin epithelium: relationship of immune- and peanut lectin labeling pattern and transport functions. Acta Histochimica 112:345–354

    Article  Google Scholar 

  • Kessel RG, Beams HW, Shih CY (1974) The origin, distribution and disappearance of surface cilia during embryonic development of Rana pipiens as revealed by scanning electron microscopy. Am J Anat 141:341–360

    Article  CAS  PubMed  Google Scholar 

  • Lacombe C, Cifuentes-Diaz C, Ne Dunia IÁ, le Auber-Thomay MÁ, Nicolas P, Amiche M (2000) Peptide secretion in the cutaneous glands of south American tree frog Phyllomedusa bicolor: an ultrastructural study. Eur J Cell Biol 79:631–641

    Article  CAS  PubMed  Google Scholar 

  • Lenzi-Mattos R, Antoniazzi MM, Haddad CFB, Tambourgi DV, Rodrigues MT, Jared C (2005) The inguinal macroglands of the frog Physalaemus nattereri (Leptodactylidae): Structure, toxic secretion and relationship with deimatic behaviour. J Zool 266:385–394

    Article  Google Scholar 

  • Lillywhite HB (2006) Water relations of tetrapod integument. J Exp Biol 209:202–226

    Article  PubMed  Google Scholar 

  • Lillywhite HB, Maderson PFA (1988) The structure and permeability of integument 1. Am Zool 28:945–962

    Article  Google Scholar 

  • Little GH, Flores A (1996) Programmed cell death in the anuran tadpole tail requires expression of a cell surface glycoprotein. Biochem Physiol 13:289–293

    Article  Google Scholar 

  • Lockshin RA, Zakeri Z (2001) Programmed cell death and apoptosis: origins of the theory. Mol Cell Biol 2:545–550

    CAS  Google Scholar 

  • Magnago LFS, Rocha MF, Meyer L, Martins SV, Meira-Neto JAA (2015) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24:2305–2318

    Article  Google Scholar 

  • Magnusson WE, Hero LJM (1991) Predation and the evolution of complex oviposition behaviour in Amazon rainforest frogs. Oecologia 86:310–318

    Article  PubMed  Google Scholar 

  • Mailho-Fontana PL, Antoniazzi MM, Sciani JM, Pimenta DC, Barbaro KC, Jared C (2018) Morphological and biochemical characterization of the poison glands in toads (Rhinella marina group) from different environments. Front Zool 46:1–15

    Google Scholar 

  • Marantelli G, Berger L, Speare R, Keegaw L (2004) Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development. Pac Conserv Biol 10:173–179

    Article  Google Scholar 

  • Menin M, Lima AP (2009) Redescription of the tadpole of Leptodactylus Rhodomystax (Anura: Leptodactylidae) with natural history notes. Zootaxa. 2203:65–68

  • Merilaita S, Lind J (2005) Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc Royal Soc B: Biol Sci 272:665–670

    Article  Google Scholar 

  • Nascimento J, Lima JD, Suárez P, Baldo D, Andrade GV, Pierson TW, Fitzpatrick BM, Haddad CFB, Recco-Pimentel SM, Lourenço LB (2019) Extensive cryptic diversity within the Physalameus cuvieri-Physalaemus ephippifer species complex (Amphibia, Anura) revealed by cytogenetic, mitochondrial, and genomic markers. Front Genet 10:1–15

    Article  Google Scholar 

  • Nishikawa A, Kaiho M, Yosttizato I (1989) Cell death in the anuran tadpole tail: thyroid hormone induces keratinization and tail-specific growth inhibition of epidermal cells. Dev Biol 131:337–344

    Article  CAS  PubMed  Google Scholar 

  • Nokhbatolfoghahai M, Downie JR, Ogilvy V (2006) Surface ciliation of anuran amphibian larvae: persistence to late stages in some species but not others. J Morphol 267:1248–1256

    Article  CAS  PubMed  Google Scholar 

  • Nosi D, Terreni A, Alvarez BB, Delfino G (2002) Granular gland polymorphism in the skin of Phyllomedusa hypochondrialis azurea (Anura, Hylidae): response by different gland types to norepinephrine stimulation. Zoomorphology 121:139–148

    Article  Google Scholar 

  • Ortiz ZA, Villaro A, Wa D, Montuenga L, Etayo J, Sesma P, Vazquez J (1993) Osmoregulatory-like mitochondria-rich cells in the developing pancreatic ducts of young anuran tadpoles. J Morphol 216:339–350

    Article  Google Scholar 

  • Ouchi de Melo LS, Gonçalves-Souza T, Garey MV, Cerqueira D (2017) Tadpole species richness within lentic and lotic microhabitats: an interactive influence of environmental and spatial factors. Herpetol J 27:339–345

    Google Scholar 

  • Paola Ferraro D, Oscar Pereyra M, Emilio Topa P, Faivovich J (2020) Evolution of macroglands and defensive mechanisms in leiuperinae (Anura: Leptodactylidae). Zool J Linn Soc 10:1–25

    Google Scholar 

  • Polo-Cavia N, Gomez-Mestre I (2017) Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour. Sci Rep 7:1–10

    Article  Google Scholar 

  • Ponssa ML, Barrionuevo JS, Pucci Alcaide F, Pucci Alcaide A (2017) Morphometric variations in the skin layers of frogs: an exploration into their relation with ecological parameters in Leptodactylus (Anura, Leptodactylidae), with an emphasis on the eberth-kastschenko layer. Anat Rec 300:1895–1909

    Article  Google Scholar 

  • Quinzio SI, Goldberg J (2019) Transient integumentary structures in Boana riojana (Anura, Hylidae) tadpoles. Amphibia Reptilia 40:543–549

    Article  Google Scholar 

  • Regueira E, Dávila C, Hermida GN (2016) Morphological changes in skin glands during development in Rhinella Arenarum (Anura: Bufonidae). Anat Rec 299:141–156

    Article  CAS  Google Scholar 

  • Regueira E, Dávila C, Sassone AG, O’Donohoe MEA, Hermida GN (2017) Post-metamorphic development of skin glands in a true toad: parotoids versus dorsal skin. J Morphol 278:652–664

    Article  PubMed  Google Scholar 

  • Rodrigues LC, Correa FS, Juen L, dos Santos-Costa MC (2018) Effects of pond structural complexity on the reproduction of Physalaemus ephippifer (Anura, Leptodactylidae). Anim Biol 68:405–415

    Article  Google Scholar 

  • Rößler DC, Lötters S, Mappes J, Valkonen JK, Menin M, Lima AP, Pröhl H (2019) Sole coloration as an unusual aposematic signal in a neotropical toad. Sci Rep 9:1–11

    Google Scholar 

  • Rot-Nikcevic I, Denver RJ, Wassersug RJ (2005) The influence of visual and tactile stimulation on growth and metamorphosis in anuran larvae. Br Ecol Soc 19:1008–1016

    Google Scholar 

  • Sayed AEDH, Elballouz AI, Wassif ET (2015) Histological and histochemical studies on the early developmental stages of the Egyptian toad Bufo regularis. Open J Anim Sci 5:142–156

    Article  Google Scholar 

  • Schreiber AM, Brown DD (2003) Tadpole skin dies autonomously in response to thyroid hormone at metamorphosis. Proc Natl Acad Sci USA 100:1769–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherratt E, Vidal-García M, Anstis M, Keogh JS (2017) Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nature Ecology and Evolution 1:1385–1391

    Article  PubMed  Google Scholar 

  • Skelly DK (1975) Tadpole communities: pond permanence and predation are powerful forces shaping the structure of tadpole communities. Am Sci 85:36–45

    Google Scholar 

  • Stynoski JL, O’Connell LA (2017) Developmental morphology of granular skin glands in pre-metamorphic egg-eating poison frogs. Zoomorphology 136:219–224

    Article  Google Scholar 

  • Takahara T, Mitsuhashi-Ohnishi C, Fujiwara-Tsujii N, Yamaoka R (2011) Characterization of chemical defenses in ranid tadpoles against a fish predator. J Ethol 29:427–434

    Article  Google Scholar 

  • Tata JR (1994) Hormonal regulation of programmed cell death during amphibian metamorphosis. Biochem Cell Biol 72:581–588

    Article  CAS  PubMed  Google Scholar 

  • Thibaudeau G, Altig R (2012) Coloration of Anuran tadpoles (Amphibia): development, dynamics, function, and hypotheses. ISRN Zoology. 2012:1–16

    Article  Google Scholar 

  • Toledo R, Jared C (1993) Cutaneous adaptations to water balance in amphibians. Comp Biochem Physiol 105:593–603

    Article  Google Scholar 

  • Toledo RC, Jared C (1995) Review Cutaneous granular glands and amphibian venoms. Biochem Physiol 111:1–29

    Article  Google Scholar 

  • Toledo LF, Sazima I, Haddad CFB (2011) Behavioural defences of anurans: an overview. Ethol Ecol Evol 23:1–25

    Article  Google Scholar 

  • Toledo LF, Haddad CFB (2009) Colors and some morphological traits as defensive mechanisms in anurans. Int J Zool. 2009:1–13

  • Twomey E, Johnson JD, Castroviejo-Fisher S, van Bocxlaer I (2020) A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Mol Ecol 29:2004–2015

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama M, Yoshizawa H (1992) Salinity tolerance and structure of external and internal gills in tadpoles of the crab-eating frog. Rana Cancrivora Cell Tissue Res 267:35–44

    Article  CAS  PubMed  Google Scholar 

  • Vitt LJ, Caldwell P (2009) Herpetology: an introduction biology of amphibians and reptiles. Academic Press

    Google Scholar 

  • Wassersug R, Hessler CM (1971) Tadpole Behaviour: aggregation in larval Xenopus laevis. Anim Behav 19:386–389

    Article  CAS  PubMed  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93

    Article  Google Scholar 

  • WWF Brasil (2023). World Wide Fund for Nature Inc. Retrieved from: https://www.wwf.org.br/

  • Xu X, Lai R (2015) The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 115:1760–1846

    Article  CAS  PubMed  Google Scholar 

  • Yaoita Y (2019) Tail resorption during metamorphosis in Xenopus tadpoles. Front Endocrinol 10:1–11

    Article  Google Scholar 

  • Yoshizato K (1992) Development death and transformation of larval cells during metamorphosis of anura. Develop Growth Differ 34:607–612

    Article  Google Scholar 

Download references

Acknowledgements

The authors thanks the sampling team of Laboratório de Zoologia e Ecologia de Vertebrados. We acknowledge Laboratório de Microanálises/UFPa for helping with SEM analysis and photos and ICMBio for granting animals sampling authorization under SISBIO/77409 protocol. This work was financially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) master’s degree grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by JLSDS. The first draft of the manuscript was written by JLSDS and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juliana L. S. Santos.

Ethics declarations

Conflict of interest

The authors disclosure no conflict of interests. Animals’ experimentation was conducted accordingly to the Comitê de Ética no Uso de Animais from Universidade Federal do Pará (CEUA/UFPA) under the protocol nº 6371061016. Animals’ sampling was authorized by Instituto Chico Mendes de Conservação da Biodiversidade under the protocol SISBIO/77409.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.L.S., Oliveira-Bahia, V.R.L., Souza-Ferreira, M.L.C.e. et al. Larvae to adult: skin ontogeny of Physalaemus ephippifer (Anura: Leptodactylidae). Zoomorphology 143, 189–202 (2024). https://doi.org/10.1007/s00435-023-00624-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-023-00624-5

Keywords

Navigation