Skip to main content
Log in

Trunk spines in cystacanths and adults of Corynosoma spp. (Acanthocephala): Corynosoma cetaceum as an exceptional case of phenotypic variability

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Adults of the acanthocephalan Corynosoma cetaceum deeply attach to the stomach of dolphins using the proboscis and its spiny foretrunk as a disk while the spiny hindtrunk bends to also embed its ventral spines. During deep attachment, two ventral folds of tegument, anterior and posterior, are created. Spine growth is inhibited to a variable degree in folds, generating an extraordinary phenotypic variability, with most individuals, especially females, having folds partially or totally devoid of spines. Little is known on how this variability is generated and why it is not apparently found in other Corynosoma spp. In this paper, we examined the trunk armature of 77 and 388 cystacanth larvae of C. cetaceum and C. australe, respectively, from teleosts, and over 8800 adult specimens of C. australe, C. bullosum, C. cetaceum, C. strumosum, C. villosum and C. wegeneri from marine mammals. Cystacanths and adults of C. cetaceum exhibited the same range of fold spine reduction and variability, suggesting that they are generated prior to the adult stage (i.e., before spines are functional) and do not result from phenotypic plasticity. The other Corynosoma species analyzed created only the anterior fold during deep attachment, but it was always spined. Females of C. cetaceum had significantly larger foretrunk and hindtrunk spines than the other species and likely suffer stronger fold compression during deep attachment. The exceptional colonization of a harsh microhabitat, the stomach, could have generated a trade-off in C. cetaceum, which must bend the trunk to attach (as other Corynosoma spp.) but must also produce large spines that, in the folds, presumably are maladaptive and must be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amin OM, Heckmann RA, Halajian A, El-Naggar AM (2011) The morphology of a unique population of Corynosoma strumosum (Acanthocephala: Polymorphidae) from the Caspian seal, Pusa caspica, in the land-locked Caspian Sea using SEM, with special notes on histopathology. Acta Parasitol 56:1–15

    Article  Google Scholar 

  • Aznar FJ, Bush AO, Fernández M, Raga JA (1999a) Constructional morphology and mode of attachment of the trunk of Corynosoma cetaceum (Acanthocephala: Polymorphidae). J Morphol 241:237–249

    Article  CAS  PubMed  Google Scholar 

  • Aznar FJ, Bush AO, Raga JA (1999b) Polymorphus arctocephali Smales, 1986, a synonym of Corynosoma cetaceum Johnston & Best, 1942 (Acanthocehala: Polymorphidae). Syst Parasitol 44:59–70

    Article  CAS  PubMed  Google Scholar 

  • Aznar FJ, Bush AO, Balbuena JA, Raga JA (2001) Corynosoma cetaceum in the stomach of franciscanas, Pontoporia blainvillei (Cetacea): an exceptional case of habitat selection by an acanthocephalan. J Parasitol 87:536–541

    Article  CAS  PubMed  Google Scholar 

  • Aznar FJ, Bush AO, Raga JA (2002) Reduction and variability of trunk spines in the acanthocephalan Corynosoma cetaceum: the role of physical constraints on attachment. Invertebr Biol 121:104–114

    Article  Google Scholar 

  • Aznar FJ, Pérez-Ponce de León G, Raga JA (2006) Status of Corynosoma (Acanthocephala: Polymorphidae) based on anatomical, ecological and phylogenetic evidence, with the erection of Pseudocorynosoma n. gen. J Parasitol 93:548–564

    Article  Google Scholar 

  • Aznar FJ, Hernández-Orts J, Suárez AA, García-Varela M, Raga JA, Cappozzo HL (2012) Assessing host-parasite specificity through coprological analysis: a case study with species of Corynosoma (Acanthocephala: Polymorphidae) from marine mammals. J Helminthol 86:156–164

    Article  CAS  PubMed  Google Scholar 

  • Brázová T, Poddubnaya LG, Miss NR, Hanzelová V (2014) Ultrastructure and chemical composition of the proboscis hooks of Acanthocephalus lucii (Müller 1776) (Acanthocephala: Palaeacanthocephala) using X-ray elemental analysis. Folia Parasitol 61:549–557

    PubMed  Google Scholar 

  • Crompton DWT, Lee DL (1965) The fine structure of the body wall of Polymorphus minutus (Goeze 1782) (Acanthocephala). Parasitology 55:357–364

    Article  CAS  PubMed  Google Scholar 

  • Denny M (1969) Life-cycles of helminth parasites using Gammarus lacustris as an intermediate host in a Canadian lake. Parasitology 59:795–827

    CAS  PubMed  Google Scholar 

  • Dezfuli BS, Lui A, Glari L, Boldrini P, Giovonazzo G (2008) Ultrastructural study on the body surface of the acanthocephalan parasite Dentitruncus truttae in brown trout. Microsc Res Tech 71:230–235

    Article  PubMed  Google Scholar 

  • Heckmann RA, Amin OM, Radwan NAE, Standing MD, Eggett DL (2012a) Comparative chemical element analysis using energy dispersive X-ray microanalysis (EDXA) for four species of Acanthocephala. Sci Parasitol 13:27–35

    Google Scholar 

  • Heckmann RA, Amin OM, Radwan NA, Standing MD, Eggett DL, El Naggar AM (2012b) Fine structure and energy dispersive X-ray analysis (EDXA) of the proboscis hooks of Rhadinorhynchus ornatus Van Cleave, 1918 (Rhadinorhynchidae: Acanthocephala). Sci Parasitol 13:37–43

    Google Scholar 

  • Herlyn H, Ehlers U (2001) Organisation of the praesoma in Acanthocephalus anguillae (Acanthocephala, Palaeacanthocephala) with special reference to the muscular system. Zoomorphology 121:13–18

    Article  Google Scholar 

  • Hernández-Orts JS, Timi J, Raga JA, García-Varela M, Crespo EA, Aznar FJ (2012) Patterns of trunk spine growth in two congeneric species of acanthocephalan: investment in attachment may differ between sexes and species. Parasitology 139:945–955

    Article  PubMed  Google Scholar 

  • Petrochenko VI (1956) Acanthocephala of domestic and wild animals, vol 1. Izdatel’stvo Akademii Nauk SSSR, Moscow. English translation by Israel Program for Scientific Translations Ltd., 1971

  • Podesta RB, Holmes JC (1970) The life cycles of three polymorphids (Acanthocephala) occurring as juveniles in Hyalella azteca (Amphipoda) at Cooking Lake, Alberta. J Parasitol 56:1118–1123

    Article  Google Scholar 

  • Poulin R (2007) Investing in attachment: evolution of anchoring structures in acanthocephalan parasites. Biol J Linn Soc 90:637–645

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Sardella NH, Mattiucci S, Timi JT, Bastida RO, Rodríguez DH, Nascetti G (2005) Corynosoma australe Johnston, 1937 and C. cetaceum Johnston & Best, 1942 (Acanthocephala: Polymorphidae) from marine mammals and fishes in Argentinian waters: allozyme markers and taxonomic status. Syst Parasitol 61:143–159

    Article  PubMed  Google Scholar 

  • Silva RZ, Pereira J Jr, Cousin JCB (2014) Histological patterns of the intestinal attachment of Corynosoma australe (Acanthocephala: Polymorphidae) in Arctocephalus australis (Mammalia: Pinnipedia). J Parasit Dis 38:410–416

    Article  PubMed Central  PubMed  Google Scholar 

  • Taraschewski H (2000) Host-parasite interactions in Acanthocephala: a morphological approach. Adv Parasitol 46:1–179

    Article  CAS  PubMed  Google Scholar 

  • Van Cleave HJ (1952) Some host-parasite relationships of the Acanthocephala, with special reference to the organs of attachment. Exp Parasitol 1:305–330

    Article  Google Scholar 

  • Van Cleave HJ (1953) Acanthocephala of North American mammals. Biological Monographs. University of Illinois Press, Urbana

    Google Scholar 

  • Vogel S (1988) Life’s devices. Princeton University Press, Princeton

    Google Scholar 

  • Zdzitowiecki K (1984) Redescription of Corynosoma hamanni (Linstow, 1982) and description of C. pseudohamanni sp. n. (Acanthocephala) from the environs of the South Shetlands (Antarctic). Acta Parasitol Pol 24:379–393

    Google Scholar 

Download references

Acknowledgments

We thank Teodora Mitu, Margarita del Dedo, and Mar Costa for technical assistance. Mijail Yurakho lent us specimens of C. bullosum, C. strumosum, C. villosum, and C. wegeneri. Pilar Gómez, Teresa Mínguez, and Enrique Navarro (Servicio de Soporte a la Investigación Experimental. University of Valencia) helped us with the use of the SEM. Comments by an anonymous referee significantly improved the manuscript. J.S.H.O. benefited from a Postdoctoral Fellowship from the General Directorate of Academic Staff Affairs (DGAPA), UNAM, Mexico. This work was funded by BBVA Projects No. BIOCON 04, CGL2012-39545 from the Ministry of Economy and Competitiveness, Spain, and PROMETEOII/2015/018 of the Valencian Government, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Aznar.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aznar, F.J., Crespo, E.A., Raga, J.A. et al. Trunk spines in cystacanths and adults of Corynosoma spp. (Acanthocephala): Corynosoma cetaceum as an exceptional case of phenotypic variability. Zoomorphology 135, 19–31 (2016). https://doi.org/10.1007/s00435-015-0290-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-015-0290-7

Keywords

Navigation