Skip to main content
Log in

Morphology reflects microhabitat preferences in an assemblage of neotropical wandering spiders

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Coexistence is thought to be based mainly on interspecific differences in the use of limiting resources and habitat choice, both being associated with specific traits. We studied morphological parameters within an assemblage of large wandering spider species in Costa Rica subdivided into three subguilds: (1) semi-aquatic species, (2) forestground dwellers and (3) vegetation dwellers. We hypothesized that the observed differences between the spider species in microhabitat preferences and abilities to adhere to smooth surfaces should be associated with corresponding morphological traits. The leg scopulation patterns were surprisingly complex and reflected the ecological preferences of the spiders. We found that the scopulation patterns and the ratio of tarsus to leg length (T/L) appeared to be most important: the poor adhesion abilities of the semi-aquatic species were reflected by the absence of tarsal claw tufts, and these species also showed the highest T/L ratio. The forest-ground dwellers had smaller claw tufts relative to body mass than the vegetation dwellers that consistently showed the best adhesion performance. This study presents the first family-spanning ecomorphological analysis of an assemblage of large tropical wandering spiders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11(7):36–42

    Google Scholar 

  • Barth FG (2001) Sinne und Verhalten: aus dem Leben einer Spinne. Springer, Berlin

    Book  Google Scholar 

  • Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113

    PubMed  Google Scholar 

  • Beuttell K, Losos JB (1999) Ecological morphology of Caribbean anoles. Herpetol Monogr 13:1–28

    Article  Google Scholar 

  • Carico JE (1993) Revision of the genus Trechalea Thorell (Araneae, Trechaleidae) with a review of the taxonomy of the Trechaleidae and Pisauridae of the western hemisphere. J Arachnol 21:226–257

    Google Scholar 

  • Elstrott J, Irschick DJ (2004) Evolutionary correlations among morphology, habitat use and clinging performance in Caribbean Anolis lizards. Biol J Linn Soc 83:389–398

    Article  Google Scholar 

  • Foelix RF (1992) Biologie der Spinnen. 2. Aufl. Thieme

  • Foelix RF, Jackson RR, Henksmeyer A, Hallas S (1984) Tarsal hairs specialized for prey capture in the Salticid Portia. Rev Arachnol 5:329–334

    Google Scholar 

  • Gamble T, Greebaum E, Jackman TR, Russell AP, Bauer AM (2012) Repeated origin and loss of adhesive toepads in geckos. PLoS One 7:e39429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasnier TR, Azevedo CS, Torres-Sánchez MP, Höfer H (2002) Adult size of eight hunting spider species in central Amazonia: temporal variations and sexual dimorphisms. J Arachnol 30:146–154

    Article  Google Scholar 

  • Höfer H, Brescovit AD (2000) A revision of the Neotropical spider genus Ancylometes Bertkau (Araneae: Pisauridae). Insect Syst Evol 31:323–360

    Article  Google Scholar 

  • Jocqué R, Alderweireldt M (2005) Lycosidae: the grassland spiders. In: Deltshev C, Stoev P (eds) European arachnology. Acta Zool Bulgar, Suppl 1: 125–130

  • Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733–2738

    Article  CAS  PubMed  Google Scholar 

  • Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518

    Article  Google Scholar 

  • Lapinski W, Tschapka M (2013) Habitat use in an assemblage of Central American wandering spiders. J Arachnol 41:151–159

    Article  Google Scholar 

  • Lapinski W, Tschapka M (2014) Desiccation resistance reflects patterns of microhabitat choice in a Central American assemblage of wandering spiders. J Exp Biol 217:2789–2795

    Article  PubMed  Google Scholar 

  • Melchers M (1967) Der Beutefang von Cupiennius salei Keyserling (Ctenidae). Z Morph Ökol Tiere 58:321–346

    Article  Google Scholar 

  • Morin PJ (2011) Community ecology. Wiley, UK

    Book  Google Scholar 

  • Niederegger S (2013) Functional aspects of spider scopulae. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 57–66

    Chapter  Google Scholar 

  • Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1332

    Article  Google Scholar 

  • Pekár S, Šobotník J, Lubin Y (2011) Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98:593–603

    Article  PubMed  Google Scholar 

  • Rovner JS (1978) Adhesive hairs in spiders: behavioral functions and hydraulically mediated movement. Symp Zool Soc Lond 42:99–108

    Google Scholar 

  • Rovner JS (1980) Morphological and ethological adaptations for prey capture in wolf spiders (Araneae, Lycosidae). J Arachnol 8:201–215

    Google Scholar 

  • Shultz JW (1987) Walking and surface film locomotion in terrestrial and semi-aquatic spiders. J Exp Biol 128:427–444

    Google Scholar 

  • Silva Dávila D (2003) Higher-level relationships of the spider family Ctenidae (Araneae: Ctenoidea). Bull Am Mus nat Hist 274:1–86

    Article  Google Scholar 

  • Suter RB, Rosenberg O, Loeb S, Wildman H, Long JH (1997) Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. J Exp Biol 200:2523–2538

    PubMed  Google Scholar 

  • Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–3272

    Article  CAS  Google Scholar 

  • Wasserthal LT (2001) Anpassungen bei Sphingiden zur Vermeidung von Spinnen- und Fledermaus-Attacken. Verh Westd Entom Tag 2000:13–30

    Google Scholar 

  • Williams EE (1972) The origin of faunas. Evolution of lizard congeners in a complex island fauna: a trial analysis. Evol Biol 6:47–89

    Article  Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wolff JO, Gorb SN (2012a) Comparative morphology of pretarsal scopulae in eleven spider families. Arthropod Struct Dev 41:419–433

    Article  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2012b) The influence of humidity on the attachment ability of the spider Philodromus dispar (Araneae, Philodromidae). Proc R Soc B 279:139–143

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolff JO, Gorb SN (2014) Adhesive foot pads: an adaptation to climbing? An ecological survey in hunting spiders. Zoology. doi:10.1016/j.zool.2014.04.006

    PubMed  Google Scholar 

  • Wolff JO, Nentwig W, Gorb SN (2013) The great silk alternative: multiple co-evolution of web loss and sticky hairs in spiders. PLoS One 8:e62682. doi:10.1371/journal.pone.0062682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the German Academic Exchange Service (DAAD) for supporting fieldwork of WL in Costa Rica. Many thanks to the technical staff of the Electron Microscopy Department (University of Ulm) for valuable help with technical problems. Martin Pfeiffer (University of Ulm, Germany) helped with multivariate statistics. Hubert Höfer (State Museum of Natural History, Karlsruhe, Germany) provided us with valuable unpublished Masters’ and Doctoral theses. The MINAET (Ministerio de Ambiente, Energía y Telecomunicaciones, Costa Rica) gave us the permit to conduct the field work in Costa Rica and to export specimens. The friendly assistance of Javier Guevara (MINAET) is greatly appreciated. We are very grateful to Bernal Rodríguez-Herrera (RBT, UCR) and all staff members at the Reserva Biológica Tirimbina for their friendliness, support and for allowing us to realize this project at the station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Lapinski.

Additional information

Communicated by Andreas Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapinski, W., Walther, P. & Tschapka, M. Morphology reflects microhabitat preferences in an assemblage of neotropical wandering spiders. Zoomorphology 134, 219–236 (2015). https://doi.org/10.1007/s00435-015-0257-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-015-0257-8

Keywords

Navigation