Skip to main content
Log in

The integument in troglobitic and epigean woodlice (Isopoda: Oniscidea): a comparative ultrastructural study

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

A Correction to this article was published on 04 January 2023

This article has been updated

Abstract

We compared the ultrastructure and the relative thickness of the integumental cuticle in several species of troglobitic and non-troglobitic woodlice. Measurements of tergal cuticle thickness on histological sections demonstrated that the cuticles in non-troglobites are thicker than those in troglobites of similar body sizes. As revealed by scanning electron microscopy, the endocuticles in troglobites consist of more numerous and thinner lamellae compared to cuticles of similar thickness in non-troglobites. Similar differences in the number and thickness of cuticular lamellae were not found in the exocuticle. As demonstrated by transmission electron microscopy of the epicuticles in troglobitic and non-troglobitic woodlice, the simple inner epicuticle is thinner relative to the total epicuticle thickness in troglobites, but this is not the case for the outer epicuticle. Outer epicuticles consisting of different numbers of sublayers can be found in troglobites as well as in non-troglobites and more complex outer epicuticles are not characteristic of representatives of any of the two ecological groups. Our results indicate that the thickness and structure of the integumental cuticle are important for evolutionary success in the subterranean environment. Nevertheless, the cuticles of troglobites are diverse in their ultrastructural features, likely reflecting different lifestyles of various troglobites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with imageJ. Biophoton Int 11:36–42

    Google Scholar 

  • Boutin C (2004) Organisms: classification. In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, London, pp 1170–1175

    Google Scholar 

  • Bursell E (1955) The transpiration of terrestrial isopods. J Exp Biol 32:238–255

    CAS  Google Scholar 

  • Christiansen K (2004) Adaptation: morphological (external). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, London, pp 14–18

    Google Scholar 

  • Christiansen K (2012) Morphological adaptation. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic Press, Waltham, pp 517–528

    Chapter  Google Scholar 

  • Compére P (1990) Fine structure and elaboration of the epicuticle and the pore canal system in tergite cuticle of the land isopod Oniscus asellus during a moulting cycle. In: Juchault P, Mocquard JP (eds) The biology of terrestrial isopods: third international symposium, Poitiers, July 10–12. Université de Poitiers, Poitiers, pp 169–175

    Google Scholar 

  • Csonka D, Halasy K, Szabó P, Mrak P, Štrus J, Hornung E (2013) Eco-morphological studies on pleopodal lungs and cuticle in Armadillidium species (Crustacea, Isopoda, Oniscidea). Arthropod Struct Dev 42:229–235

    Article  PubMed  Google Scholar 

  • Culver DC, Sket B (2002) Biological monitoring in caves. Acta Carsologica 31:55–64

    Google Scholar 

  • Hadley NF, Ahearn GA, Howarth FG (1981) Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J Arachnol 9:215–222

    Google Scholar 

  • Hild S, Marti O, Ziegler A (2008) Spatial distribution of calcite and amorphous calcium carbonate in the cuticle of the terrestrial crustaceans Porcellio scaber and Armadillidium vulgare. J Struct Biol 163:100–108

    Article  CAS  PubMed  Google Scholar 

  • Hild S, Neues F, Žnidaršič N, Štrus J, Epple M, Marti O, Ziegler A (2009) Ultrastructure and mineral distribution in the tergal cuticle of the terrestrial isopod Titanethes albus. Adaptations to a karst cave biotope. J Struct Biol 168:426–436

    Article  PubMed  Google Scholar 

  • Howarth FG (1980) The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34:394–406

    Article  Google Scholar 

  • Jeuniaux C, Compère P, Goffinet G (1986) Structure, synthèse et degradation des chitinoprotéines de la cuticle des crustacés décapodes. Boll Zool 53:183–196

    Article  Google Scholar 

  • Karaman IM (2003) Macedonethes stankoi n. sp., a rhithral oniscidean isopod (Isopoda: Oniscidea: Trichoniscidae) from Macedonia. Org Divers Evol 3(Electronic Suppl 8):1–15

    Google Scholar 

  • Lavoie KH, Helf KL, Poulson TL (2007) The biology and ecology of North American cave crickets. J Cave Karst Stud 69:114–134

    Google Scholar 

  • Manicastri C, Argano R (1989) An analytical synopsis of the troglobitic terrestrial isopods. In: Ferrara F, Argano R, Manicastri C, Schmalfuss H. Taiti S (eds) Proceedings of the second symposium on the biology of terrestrial isopods. Monitore zoologico italiano N. S., Monografia vol 4, pp 63–73

  • Mitov PG (2011) A new anophthalmous species of Paranemastoma from Bulgaria (Opiliones: Nemastomatidae). J Arachnol 39:303–319

    Article  Google Scholar 

  • Moldovan OT (2012) Beetles. In: White WB, Culver DC (eds) Encyclopedia of caves, 2nd edn. Academic Press, Waltham, pp 54–62

    Chapter  Google Scholar 

  • Mrak P, Žnidaršič N, Tušek-Žnidarič M, Klepal W, Gruber D, Štrus J (2012) Egg envelopes and cuticle renewal in Porcellio embryos and marsupial mancas. ZooKeys 176:55–72. doi:10.3897/zookeys.176.2418

    Article  PubMed  Google Scholar 

  • Nikolov S, Fabritius H, Petrov M, Friák M, Lymperakis L, Sachs C, Raabe D, Neugebauer J (2011) Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. J Mech Behav Biomed Mater 4:129–145

    Article  CAS  PubMed  Google Scholar 

  • Novak T, Perc M, Lipovšek S, Janžekovič F (2012) Duality of terrestrial subterranean fauna. Int J Speleol 41:181–188

    Article  Google Scholar 

  • Pütz K, Buchholz F (1991) Comparative ultrastructure of the cuticle of some pelagic, nektobenthic and benthic malacostracan crustaceans. Mar Biol 110:49–58

    Article  Google Scholar 

  • Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53:4281–4292

    Article  CAS  Google Scholar 

  • Roer R, Dillaman R (1984) The structure and calcification of the crustacean cuticle. Am Zool 24:893–909

    CAS  Google Scholar 

  • Romero A (2011) The evolution of cave life. Am Sci 99:144–151

    Article  Google Scholar 

  • Schmidt C (2008) Phylogeny of the terrestrial Isopoda (Oniscidea): a review. Arthropod Syst Phylogeny 66:191–226

    Google Scholar 

  • Schneider K, Kay AD, Fagan WF (2010) Adaptation to a limiting environment: the phosphorus content of terrestrial cave arthropods. Ecol Res 25:565–577

    Article  CAS  Google Scholar 

  • Seidl BHM, Ziegler A (2012) Electron microscopic and preparative methods for the analysis of isopod cuticle. ZooKeys 176:73–85

    Article  PubMed  Google Scholar 

  • Seidl B, Huemer K, Neues F, Hild S, Epple M, Ziegler A (2011) Ultrastructure and mineral distribution in the tergite cuticle of the beach isopod Tylos europaeus Arcangeli, 1938. J Struct Biol 174:512–526

    Article  CAS  PubMed  Google Scholar 

  • Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563

    Article  Google Scholar 

  • Spötl C, Fairchild IJ, Tooth A (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468

    Article  Google Scholar 

  • Štrus J, Žnidaršič N, Hild S, Ziegler A (2008) Microscopic anatomy and mineral composition of cuticle in amphibious isopods Ligia italica and Titanethes albus (Crustacea:Isopoda). EMC 2008. 14th European Microscopy Congress 1–5 September 2008. Aachen, Germany, pp 185–186

    Google Scholar 

  • Taiti S (2004) Crustacea: Isopoda: Oniscidea (woodlice). In: Gunn J (ed) Encyclopedia of caves and karst science. Fitzroy Dearborn, London, pp 547–551

    Google Scholar 

  • Vittori M, Kostanjšek R, Židaršič N, Štrus J (2012) Molting and cuticle deposition in the subterranean trichoniscid Titanethes albus (Crustacea, Isopoda). ZooKeys 176:23–38. doi:10.3897/zookeys.176.2285

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank J. Bedek, S. Taiti, T. Delić, M. Konec, K. Šporar and J. Jugovic who kindly provided most of the troglobitic woodlice specimens used in this study as well as J. Murko Bulić for her laboratory assistance and A. Blejec for advice on data analysis. Specimens of P. scaber were provided by P. Zidar. This work was financed by the Slovenian Research Agency as part of the Research Program P1-0184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Vittori.

Additional information

Communicated by Andreas Schmidt-Rhaesa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

435_2014_232_MOESM1_ESM.tif

The epicuticle in different parts of the body in an intramolt stage (molting) Hyloniscus riparius. a: the new cuticle of the anterior body segments just prior to anterior ecdysis with a simple outer epicuticle; b: the new cuticle of the posterior body segments just after the posterior ecdysis with a four-layered outer epicuticle; c: the old cuticle of the anterior body segments (not yet shed) with a four-layered outer epicuticle. ds: dense sublayer of the outer epicuticle, ie: inner epicuticle, oe: outer epicuticle, ex: exocuticle. Scale bar = 50 nm (TIFF 1843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vittori, M., Štrus, J. The integument in troglobitic and epigean woodlice (Isopoda: Oniscidea): a comparative ultrastructural study. Zoomorphology 133, 391–403 (2014). https://doi.org/10.1007/s00435-014-0232-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-014-0232-9

Keywords

Navigation