Skip to main content

Advertisement

Log in

In search of new stratification strategies: tissue proteomic profiling of papillary thyroid microcarcinoma in patients with localized disease and lateral neck metastases

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Introduction

Papillary thyroid carcinomas (PTC) are the most common thyroid malignancies that are often diagnosed as microcarcinomas when the tumor is less than one centimetre in diameter. Currently, there are no valid stratification strategies that would reliably assess the risk of lateral neck metastases and optimize surgical treatment.

Materials and methods

Aiming to find potential tissue biomarkers of metastatic potential, we conducted a cross-sectional proteomic pilot study on formalin-fixed paraffin-embedded tissues of metastatic (N = 10) and non-metastatic (N = 10) papillary thyroid microcarcinoma patients. Samples were analysed individually using liquid chromatography/mass spectrometry, and the differentially expressed proteins (DEP) were functionally annotated.

Results

We identified five overexpressed DEPs in the metastatic group (EPB41L2, CSE1L, GLIPR2, FGA and FGG) with a known association to tumour biology. Using bioinformatic-based tools, we found markedly different profiles of significantly enriched biological processes between the two groups.

Conclusions

The identified DEPs might have a role as potential tissue biomarkers for PTC metastases. However, further prospective research is needed to confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the Journal of Cancer Research and Clinical Oncology.

References

  • Alok Pathak K, Leslie WD, Klonisch TC, Nason RW (2013) The changing face of thyroid cancer in a population-based cohort. Cancer Med 2(4):537–544

    PubMed  PubMed Central  Google Scholar 

  • Baxter RM, Crowell TP, George JA, Getman ME, Gardner H (2007) The plant pathogenesis related protein GLIPR-2 is highly expressed in fibrotic kidney and promotes epithelial to mesenchymal transition in vitro. Matrix Biol 26(1):20–29

    PubMed  CAS  Google Scholar 

  • Broekhuis JM, James BC, Cummings RD, Hasselgren P-O (2022) Posttranslational modifications in thyroid cancer: implications for pathogenesis, diagnosis, classification, and treatment. Cancers (basel) 14(7):1610

    PubMed  CAS  Google Scholar 

  • Cao Z, Zhang Z, Tang X, Liu R, Wu M, Wu J et al (2022) Comprehensive analysis of tissue proteomics in patients with papillary thyroid microcarcinoma uncovers the underlying mechanism of lymph node metastasis and its significant sex disparities. Front Oncol. https://doi.org/10.3389/fonc.2022.887977/full

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zheng Q, Ji L et al (2022) Quantitative proteomics and functional analysis identified novel targets for missed abortion. Exp Cell Res 417(2):113216. https://doi.org/10.1016/j.yexcr.2022.113216

    Article  PubMed  CAS  Google Scholar 

  • Chung YS, Kim JY, Bae JS, Song BJ, Kim JS, Jeon HM et al (2009) Lateral lymph node metastasis in papillary thyroid carcinoma: results of therapeutic lymph node dissection. Thyroid 19(3):241–246

    PubMed  Google Scholar 

  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j

    Article  PubMed  CAS  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://www.nature.com/articles/nbt.1511

  • Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214. https://www.nature.com/articles/nmeth1019

  • Frazell EL, Foote FW (1955) Papillary thyroid carcinoma: Pathological findings in cases with and without clinical evidence of cervical node involvement. Cancer 8(6):1164–1166

    PubMed  CAS  Google Scholar 

  • Gibbs GM, Roelants K, O’Bryan MK (2008) The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—roles in reproduction, cancer, and immune defense. Endocr Rev 29(7):865–897

    PubMed  CAS  Google Scholar 

  • Giordano D, Frasoldati A, Kasperbauer JL, Gabrielli E, Pernice C, Zini M et al (2015) Lateral neck recurrence from papillary thyroid carcinoma: Predictive factors and prognostic significance. Laryngoscope 125(9):2226–2231

    PubMed  Google Scholar 

  • Goto T, Chiba A, Sukegawa J, Yanagisawa T, Saito M, Nakahata N (2013) Suppression of adenylyl cyclase-mediated cAMP production by plasma membrane associated cytoskeletal protein 4.1G. Cell Signal 25(3):690–697. https://doi.org/10.1016/j.cellsig.2012.11.020

    Article  PubMed  CAS  Google Scholar 

  • Hartl DM, Leboulleux S, Al Ghuzlan A, Baudin E, Chami L, Schlumberger M et al (2012) Optimization of staging of the neck with prophylactic central and lateral neck dissection for papillary thyroid carcinoma. Ann Surg 255(4):777–783

    PubMed  Google Scholar 

  • Harwood J, Clark OH, Dunphy JE (1978) Significance of lymph node metastasis in differentiated thyroid cancer. Am J Surg 136(1):107–112

    PubMed  CAS  Google Scholar 

  • Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al (2016) 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133

    PubMed  PubMed Central  Google Scholar 

  • Hughes CJ, Shaha AR, Shah JP, Loree TR (1996) Impact of lymph node metastasis in differentiated carcinoma of the thyroid: a matched-pair analysis. Head Neck 18(2):127–132

    PubMed  CAS  Google Scholar 

  • Ji KSY, Oyekunle TO, Thomas SM, Scheri R, Stang M, Roman SA et al (2019) Adequacy of lymph node yield for papillary thyroid cancer: an analysis of 23,131 patients. J Surg Res 1(244):566–573

    Google Scholar 

  • Kamma H, Matsumoto H, Sakamoto A, Fujiwara M, Yano Y, Shishido-Hara Y et al (2008) Cyclic AMP-mediated growth suppression and MAPK phosphorylation in thyroid papillary carcinoma cells. Mol Med Rep. https://doi.org/10.3892/mmr.1.2.245

    Article  PubMed  Google Scholar 

  • Kitahara CM, Sosa JA, Shiels MS (2020) Influence of nomenclature changes on trends in papillary thyroid cancer incidence in the United States, 2000 to 2017. J Clin Endocrinol Metab 105(12):e4823–e4830

    PubMed  PubMed Central  Google Scholar 

  • Kutay U, Ralf Bischoff F, Kostka S, Kraft R, Görlich D (1997) Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90(6):1061–1071

    PubMed  CAS  Google Scholar 

  • Lamartina L, Leboulleux S, Terroir M, Hartl D, Schlumberger M (2019) An update on the management of low-risk differentiated thyroid cancer. Endocr Relat Cancer 26(11):R597-610

    PubMed  CAS  Google Scholar 

  • Lange D, Krajewska J, Oczko-wojciechowska M (2016) Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2016.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee SK, Kim SH, Hur SM, Choe JH, Kim JH, Kim JS (2011) The efficacy of lateral neck sentinel lymph node biopsy in papillary thyroid carcinoma. World J Surg 35(12):2675–2682

    PubMed  Google Scholar 

  • Lim YC, Koo BS (2012) Predictive factors of skip metastases to lateral neck compartment leaping central neck compartment in papillary thyroid carcinoma. Oral Oncol 48(3):262–265

    PubMed  Google Scholar 

  • Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM (2017) Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. J Am Med Assoc 317(13):1338–1348

    Google Scholar 

  • Limaiem F, Rehman A, Anastasopoulou C, Mazzoni T (2022) Papillary thyroid carcinoma. [Updated 2022 Nov 6]. In: StatPearls. Treasure Island (FL): StatPearls Publishing

  • Lin P, Yao Z, Sun Y, Li W, Liu Y, Liang K et al (2019) Deciphering novel biomarkers of lymph node metastasis of thyroid papillary microcarcinoma using proteomic analysis of ultrasound-guided fine-needle aspiration biopsy samples. J Proteomics 204(June):103414

    PubMed  CAS  Google Scholar 

  • Liu G, Chen X (2002) The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene 21(47):7195–7204

    PubMed  CAS  Google Scholar 

  • Liu C, Pan C, Liang Y (2012) Screening and identification of serum proteomic biomarkers for gastric adenocarcinoma. Exp Ther Med 3(6):1005–1009. https://doi.org/10.3892/etm.2012.515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T, Zhang J, Chen H, Bianba T, Pan Y, Wang X et al (2022) PSMC2 promotes the progression of gastric cancer via induction of RPS15A / mTOR pathway. Oncogenesis 8:1–12

    Google Scholar 

  • Lu Z, Chen Y, Jing X, Wang N, Zhang T, Hu C (2018) Detection and identification of serum peptides biomarker in papillary thyroid cancer. Med Sci Monit 24:1581–1587. Available from: https://www.medscimonit.com/abstract/index/idArt/907768

  • McConahey WM, Hay ID, Woolner LB, van Heerden JA, Taylor WF (1986) Papillary thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc 61(12):978–996

    PubMed  CAS  Google Scholar 

  • Morales JCF, Xue Q, Roh-johnson M (2022) An evolutionary and physiological perspective on cell-substrate adhesion machinery for cell migration. Front Cell Dev Biol 10:943606

    Google Scholar 

  • Moreno MA, Edeiken-Monroe BS, Siegel ER, Sherman SI, Clayman GL (2012) In papillary thyroid cancer, preoperative central neck ultrasound detects only macroscopic surgical disease, but negative findings predict excellent long-term regional control and survival. Thyroid 22(4):347–355

    PubMed  PubMed Central  Google Scholar 

  • Morpheus (2023) https://software.broadinstitute.org/morpheus

  • Nachmias B, Schimmer AD (2020) Targeting nuclear import and export in hematological malignancies. Leukemia 34(11):2875–2886. https://doi.org/10.1038/s41375-020-0958-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Nam SH, Roh JL, Gong G, Cho KJ, Choi SH, Nam SY et al (2018) Nodal factors predictive of recurrence after thyroidectomy and neck dissection for papillary thyroid carcinoma. Thyroid 28(1):88–95

    PubMed  Google Scholar 

  • Palumbo JS, Kombrinck KW, Drew AF, Grimes TS, Kiser JH, Degen JL et al (2000) Fibrinogen is an important determinant of the metastatic potential of circulating tumour cells. Blood 96(10):3302–3309

    PubMed  CAS  Google Scholar 

  • Pan S, Chen R (2022) Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med 86:101097

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park JH, Lee YS, Kim BW, Chang HS, Park CS (2012) Skip lateral neck node metastases in papillary thyroid carcinoma. World J Surg 36(4):743–747

    PubMed  Google Scholar 

  • Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S et al (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50(D1):D543–D552

    PubMed  CAS  Google Scholar 

  • Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    PubMed  CAS  Google Scholar 

  • Sahni A, Simpson‐Haidaris PJ, Sahni SK, Vaday GG (2008) Francis CW Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor‐2 (FGF‐2). J Thromb Haemost 6(1):176–183. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1538783622131867

  • Scheumann GFW, Gimm O, Wegener G, Hundeshagen H, Dralle H (1994) Prognostic significance and surgical management of locoregional lymph node metastases in papillary thyroid cancer. World J Surg 18(4):559–567

    PubMed  CAS  Google Scholar 

  • Simon D, Goretzki PE, Witte J, Röher HD (1996) Incidence of regional recurrence guiding radicality in differentiated thyroid carcinoma. World J Surg 20(7):860–866

    PubMed  CAS  Google Scholar 

  • Song Y, Xu X, Wang N, Zhang T, Hu C (2022) MALDI-TOF-MS analysis in low molecular weight serum peptidome biomarkers for NSCLC. J Clin Lab Anal. https://doi.org/10.1002/jcla.24254

    Article  PubMed  PubMed Central  Google Scholar 

  • SR plot (2023) http://www.bioinformatics.com.cn/srplot

  • Staton CA, Brown NJ, Lewis CE (2003) The role of fibrinogen and related fragments in tumour angiogenesis and metastasis. Expert Opin Biol Ther 3(7):1105–1120

    PubMed  CAS  Google Scholar 

  • String Database (2023) https://string-db.org/

  • Tai CJ, Hsu CH, Shen SC, Lee WR, Jiang MC (2010) Cellular apoptosis susceptibility (CSE1L/CAS) protein in cancer metastasis and chemotherapeutic drug-induced apoptosis. J Exp Clin Cancer Res 29(1):1–9

    Google Scholar 

  • Tanaka T, Ohkubo S, Tatsuno I, Prives C (2007) hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes. Cell 130(4):638–650

    PubMed  CAS  Google Scholar 

  • Tian B, Sun W, Wang S, Liu P, Wang Y (2021) Differential expression and clinical significance of COX6C in human diseases. Am J Transl Res 13(1):1–10

    PubMed  PubMed Central  Google Scholar 

  • Tung MC, Tsai CSS, Tung JN, Tsao TY, Chen HC, Yeh KT et al (2009) Higher prevalence of secretory CSE1L/CAS in sera of patients with metastatic cancer. Cancer Epidemiol Biomarkers Prev 18(5):1570–1577

    PubMed  CAS  Google Scholar 

  • Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://www.nature.com/articles/nmeth.3901

  • Viola N, Agate L, Caprio S, Lorusso L, Brancatella A, Ricci D et al (2023) Thyroid autoimmunity, thyroglobulin autoantibodies, and thyroid cancer prognosis. Endocr Relat Cancer. https://doi.org/10.1530/ERC-23-0042

    Article  PubMed  Google Scholar 

  • Wada N, Duh QY, Sugino K, Iwasaki H, Kameyama K, Mimura T et al (2003) Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg 237(3):399–407

    PubMed  PubMed Central  Google Scholar 

  • Wada N, Masudo K, Nakayama H, Suganuma N, Matsuzu K, Hirakawa S et al (2008) Clinical outcomes in older or younger patients with papillary thyroid carcinoma: impact of lymphadenopathy and patient age. Eur J Surg Oncol 34(2):202–207

    PubMed  CAS  Google Scholar 

  • Wan B, Wang X, Tiang J, Zhou C, Lin J, Wang Z (2021) Ribosomal protein RPS15A augments proliferation of colorectal cancer RKO cells via regulation of BIRC3, p38 MAPK and Chk1. Eur Rev Med Pharmacol Sci 25(11):3967–3980

    PubMed  Google Scholar 

  • Wang Z, Zhang J, Ye M, Zhu M, Zhang B, Roy M et al (2014) Tumour suppressor role of protein 4.1B/DAL-1. Cell Mol Life Sci 71(24):4815–4830. https://doi.org/10.1007/s00018-014-1707-z

    Article  PubMed  CAS  Google Scholar 

  • Ward DG, Wei W, Buckels J, Taha AMI, Hegab B, Tariciotti L et al (2010) Detection of pancreatic adenocarcinoma using circulating fragments of fibrinogen. Eur J Gastroenterol Hepatol. 22(11):1358–1363. http://journals.lww.com/00042737-201011000-00013

  • Weitzman RE, Justicz NS, Kamani D, Kyriazidis N, Chen MH, Randolph GW (2022) How many nodes to take? Lymph node ratio below 1/3 reduces papillary thyroid cancer nodal recurrence. Laryngoscope 132(9):1883–1887

    PubMed  Google Scholar 

  • Wen J, Gao Q, Wang N, Zhang W, Cao K, Zhang Q et al (2017) Association of microRNA-related gene XPO5 rs11077 polymorphism with susceptibility to thyroid cancer. Medicine (baltimore) 96(14):e6351

    PubMed  CAS  Google Scholar 

  • Wiltshire JJ, Drake TM, Uttley L, Balasubramanian SP (2016) Systematic review of trends in the incidence rates of thyroid cancer. Thyroid 26(11):1541–1552

    PubMed  Google Scholar 

  • Wu X, Li B, Zheng C, He X (2023) Risk factors for skip metastasis in patients with papillary thyroid microcarcinoma. Cancer Med 12(6):7560–7566

    PubMed  CAS  Google Scholar 

  • Yang Z, Heng Y, Zhao Q et al (2023) The proposed modification of TNM staging and therapeutic strategy for skip metastasis in papillary thyroid carcinoma: a multicenter retrospective cohort study. Cancer Med 12(12):13270–13278

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zaydfudim V, Feurer ID, Griffin MR, Phay JE (2008) The impact of lymph node involvement on survival in patients with papillary and follicular thyroid carcinoma. Surgery 144(6):1070–1078

    PubMed  Google Scholar 

  • Zhan S, Wang T, Wang M, Li J, Ge W (2019) In-depth proteomics analysis to identify biomarkers of papillary thyroid cancer patients older than 45 years with different degrees of lymph node metastases. Proteomics Clin Appl 13(5):1–10

    Google Scholar 

  • Zhang Y, Qian Y, Zhang J, Yan W, Jung Y, Chen M et al (2017) Ferredoxin reductase is critical for p53- dependent tumor suppression via iron regulatory protein 2. Genes Dev 31(12):1243–1256

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Kong X, Zhang Y, Sun W, Wang J (2020) FDXR regulates TP73 tumor suppressor via IRP2 to modulate aging and tumor suppression. J Pathol 251(3):284–296

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Wang F, Huang Y, Ke K, Zhao B, Chen L et al (2019) FGG promotes migration and invasion in hepatocellular carcinoma cells through activating epithelial to mesenchymal transition. Cancer Manag Res 11:1653–1665. Available from: https://www.dovepress.com/fgg-promotes-migration-and-invasion-in-hepatocellular-carcinoma-cells--peer-reviewed-article-CMAR

  • Zhao X, Shen L, Feng Y, Yu H, Wu X (2015) Decreased expression of RPS15A suppresses proliferation of lung cancer cells. Tumour Biol 36(9):6733–6740

    PubMed  CAS  Google Scholar 

  • Zhao H, Huang T, Li H (2019) Risk factors for skip metastasis and lateral lymph node metastasis of papillary thyroid cancer. Surgery (united States) 166(1):55–60

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the study participants. he study was supported by the BIMIS—Biomedical Research Center Šalata, University of Zagreb School of Medicine, 10000 Zagreb, Croatia and infrastructural project CIuK (European Regional Development Fund, grant number KK.01.1.1.02.0016).

Funding

Scientific Center of Excellence for Reproductive and Regenerative Medicine (project “Reproductive and regenerative medicine—exploration of new platforms and potentials”, Grant Agreement KK.01.1.1.01.0008, which is funded by the European Union through the European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—LG, RN and FM; investigation, methodology—FM, RN and MP; formal analysis, visualization—FM, RN and MP; supervision, validation—LG and MM; writing—original draft—LG, RN, FM, GS, SH and MP; writing—review and editing—all authors. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lovorka Grgurevic.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

432_2023_5452_MOESM1_ESM.jpg

Supplementary Figure 1. Violin plot showing the analysed experimental samples. Proteins were identified by MaxQuant 2.3.1.0. software and quantified by using the label free quantification (LFQ) algorithm. Log 2 of LFQ are plotted on the y axis to show sample consistency. (JPG 322 KB)

Supplementary file2 (XLSX 403 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matovinovic, F., Novak, R., Hrkac, S. et al. In search of new stratification strategies: tissue proteomic profiling of papillary thyroid microcarcinoma in patients with localized disease and lateral neck metastases. J Cancer Res Clin Oncol 149, 17405–17417 (2023). https://doi.org/10.1007/s00432-023-05452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-05452-0

Keywords

Navigation