Skip to main content

Advertisement

Log in

Runt-related transcription factors in human carcinogenesis: a friend or foe?

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cancer is one of the deadliest pathologies with more than 19 million new cases and 10 million cancer-related deaths across the globe. Despite development of advanced therapeutic interventions, cancer remains as a fatal pathology due to lack of early prognostic biomarkers, therapy resistance and requires identification of novel drug targets.

Methods

Runt-related transcription factors (Runx) family controls several cellular and physiological functions including osteogenesis. Recent literatures from PubMed was mined and the review was written in comprehensive manner

Results

Recent literature suggests that aberrant expression of Runx contributes to tumorigenesis of many organs. Conversely, cell- and tissue-specific tumor suppressor roles of Runx are also reported. In this review, we have provided the structural/functional properties of Runx isoforms and its regulation in context of human cancer. Moreover, in an urgent need to discover novel therapeutic interventions against cancer, we comprehensively discussed the reported oncogenic and tumor suppressive roles of Runx isoforms in several tumor types and discussed the discrepancies that may have risen on Runx as a driver of malignant transformation.

Conclusion

Runx may be a novel therapeutic target against a battery of deadly human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data are available with the PI and can be shared upon valid request.

Abbreviations

Runx:

Runt-related transcription factors

CBF:

Core binding factors

RHD:

Runt homology domain

TDA:

Transactivation domain

ID:

Inhibitory domain

EMT:

Epithelial-to-mesenchymal transition

BMP:

Bone morphogenic protein

AML:

Acute myeloid leukemia

OPN:

Osteopontin

OCN:

Osteocalcin

VEGF:

Vascular endothelial growth factor

TNBC:

Triple-negative breast cancer

PDA:

Pancreatic ductal adenocarcinoma

NSCLC:

Non-small cell lung carcinoma

References

  • Ashe H, Krakowiak P, Hasterok S, Sleppy R, Roller DG, Gioeli D (2021) Role of the runt-related transcription factor (RUNX) family in prostate cancer. FEBS J 288:6112–6126

    CAS  PubMed  Google Scholar 

  • Bae SC, Lee YH (2006) Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene 366:58–66

    CAS  PubMed  Google Scholar 

  • Bai Y, Yang Y, Yan Y, Zhong J, Blee AM, Pan Y, Ma T, Jeffrey Karnes R, Jimenez R, Xu W, Huang H (2019) RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis. Theranostics 9:3459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes GL, Hebert KE, Kamal M, Javed A, Einhorn TA, Lian JB, Stein GS, Gerstenfeld LC (2004) Fidelity of Runx2 activity in breast cancer cells is required for the generation of metastases-associated osteolytic disease. Cancer Res 64:4506–4513

    CAS  PubMed  Google Scholar 

  • Bauer O, Sharir A, Kimura A, Hantisteanu S, Takeda S, Groner Y (2015) Loss of osteoblast Runx3 produces severe congenital osteopenia. Mol Cell Biol 35:1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagwat AS, Vakoc CR (2015) Targeting transcription factors in cancer. Trends Cancer 1:53–65

    PubMed  PubMed Central  Google Scholar 

  • Birnbaum DJ, Adélaïde J, Mamessier E, Finetti P, Lagarde A, Monges G, Viret F, Gonçalvès A, Turrini O, Delpero JR, Iovanna J, Giovannini M, Birnbaum D, Chaffanet M (2011) Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 50:456–465

    CAS  PubMed  Google Scholar 

  • Bledsoe KL, Mcgee-Lawrence ME, Camilleri ET, Wang X, Riester SM, van Wijnen AJ, Oliveira AM, Westendorf JJ (2014) RUNX3 facilitates growth of Ewing sarcoma cells. J Cell Physiol 229:2049–2056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blyth K, Cameron ER, Neil JC (2005) The RUNX genes: gain or loss of function in cancer. Nat Rev Cancer 5:376–387

    CAS  PubMed  Google Scholar 

  • Boonstra JJ, van Marion R, Douben HJCW, Lanchbury JS, Timms KM, Abkevich V, Tilanus HW, de Klein A, Dinjens WNM (2012) Mapping of homozygous deletions in verified esophageal adenocarcinoma cell lines and xenografts. Genes Chromosomes Cancer 51:272–282

    CAS  PubMed  Google Scholar 

  • Browne G, Taipaleenmäki H, Bishop NM, Madasu SC, Shaw LM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2015) Runx1 is associated with breast cancer progression in MMTV-PyMT transgenic mice and its depletion in vitro inhibits migration and invasion. J Cell Physiol 230:2522–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brusgard JL, Choe M, Chumsri S, Renoud K, MacKerell AD, Sudol M, Passaniti A (2015) RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget 6:28132

    PubMed  PubMed Central  Google Scholar 

  • Cameron ER, Neil JC (2004) The Runx genes: lineage-specific oncogenes and tumor suppressors. Oncogene 23:4308–4314

    CAS  PubMed  Google Scholar 

  • Cao Z, Sun B, Zhao X, Zhang Y, Gu Q, Liang X, Dong X, Zhao N (2017a) The expression and functional significance of runx2 in hepatocellular carcinoma: its role in vasculogenic mimicry and epithelial-mesenchymal transition. Int J Mol Sci 18:2

    Google Scholar 

  • Cao Z, Sun B, Zhao X, Zhang Y, Gu Q, Liang X, Dong X, Zhao N (2017b) The expression and functional significance of runx2 in hepatocellular carcinoma: its role in vasculogenic mimicry and epithelial-mesenchymal transition. Int J Mol Sci 18:500

    PubMed  PubMed Central  Google Scholar 

  • Chang W-M, Lin Y-F, Su C-Y, Peng H-Y, Chang Y-C, Lai T-C, Wu G-H, Hsu Y-M, Chi L-H, Hsiao J-R, Chen C-L, Chang J-Y, Shieh Y-S, Hsiao M, Shiah S-G (2016) Dysregulation of RUNX2/Activin-A axis upon miR-376c downregulation promotes lymph node metastasis in head and neck squamous cell carcinoma. Cancer Res 76:7140–7150

    CAS  PubMed  Google Scholar 

  • Chen F, Bai J, Li W, Mei P, Liu H, Li L, Pan Z, Wu Y, Zheng J (2013) RUNX3 suppresses migration, invasion and angiogenesis of human renal cell carcinoma. PLoS ONE 8:e56241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chimge NO, Frenkel B (2013) The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 32:2121–2130

    CAS  PubMed  Google Scholar 

  • Chimge NO, Little GH, Baniwal SK, Adisetiyo H, Xie Y, Zhang T, O’Laughlin A, Liu ZY, Ulrich P, Martin A, Mhawech-Fauceglia P, Ellis MJ, Tripathy D, Groshen S, Liang C, Li Z, Schones DE, Frenkel B (2016) RUNX1 prevents oestrogen-mediated AXIN1 suppression and β-catenin activation in ER-positive breast cancer. Nat Commun 7:1–12

    Google Scholar 

  • Cho JY, Akbarali Y, Zerbini LF, Gu X, Boltax J, Wang Y, Oettgen P, Zhang DE, Libermann TA (2004) Isoforms of the Ets transcription factor NERF/ELF-2 physically interact with AML1 and mediate opposing effects on AML1-mediated transcription of the B cell-specific blk gene. J Biol Chem 279:19512–19522

    CAS  PubMed  Google Scholar 

  • Choi Ah, Illendula A, Pulikkan JA, Roderick JE, Tesell J, Yu J, Hermance N, Zhu LJ, Castilla LH, Bushweller JH, Kelliher MA (2017) RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 130:1722–1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chotteau-Lelièvre A, Révillion F, Lhotellier V, Hornez L, Desbiens X, Cabaret V, de Launoit Y, Peyrat JP (2004) Prognostic value of ERM gene expression in human primary breast cancers. Clin Cancer Res 10:7297–7303

    PubMed  Google Scholar 

  • Chuang LSH, Ito Y (2010) RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene 29:2605–2615

    CAS  PubMed  Google Scholar 

  • Chuang LSH, Ito K, Ito Y (2013) RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer 132:1260–1271

    CAS  PubMed  Google Scholar 

  • Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. The Lancet 393:169–182

    Google Scholar 

  • Cohen-Solal KA, Boregowda RK, Lasfar A (2015) RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer 14:1–10

    CAS  Google Scholar 

  • Dalle Carbonare L, Frigo A, Francia G, Davì MV, Donatelli L, Stranieri C, Brazzarola P, Zatelli MC, Menestrina F, Valenti MT (2012) Runx2 mRNA expression in the tissue, serum, and circulating non-hematopoietic cells of patients with thyroid cancer. J Clin Endocrinol Metab 97:2

    Google Scholar 

  • Deiana M, Carbonare LD, Serena M, Cheri S, Parolini F, Gandini A, Marchetto G, Innamorati G, Manfredi M, Marengo E, Brandi J, Cecconi D, Mori A, Mina MM, Antoniazzi F, Mottes M, Tiso N, Malerba G, Zipeto D, Valenti MT (2018) New insights into the runt domain of RUNX2 in melanoma cell proliferation and migration. Cells 7:220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley KJ, Revill K, Whitby P, Clayton RN, Farrell WE (2008) Genome-wide analysis in a murine Dnmt1 knockdown model identifies epigenetically silenced genes in primary human pituitary tumors. Mol Cancer Res 6:1567–1574

    CAS  PubMed  Google Scholar 

  • El-shaarawy F, Abo ElAzm MM, Mohamed RH, Radwan MI, Abo-Elmatty DM, Mehanna ET (2022) Relation of the methylation state of RUNX3 and p16 gene promoters with hepatocellular carcinoma in Egyptian patients. Egypt J Med Hum Genet 23:1–9

    Google Scholar 

  • Endo T, Ohta K, Kobayashi T (2008) Expression and function of Cbfa-1/Runx2 in thyroid papillary carcinoma cells. J Clin Endocrinol Metab 93:2409–2412

    CAS  PubMed  Google Scholar 

  • Farina NH, Zingiryan A, Akech JA, Callahan CJ, Lu H, Stein JL, Languino LR, Stein GS, Lian JB (2016) A microRNA/Runx1/Runx2 network regulates prostate tumor progression from onset to adenocarcinoma in TRAMP mice. Oncotarget 7:70462

    PubMed  PubMed Central  Google Scholar 

  • Feng X, Zheng Z, Wang Y, Song G, Wang L, Zhang Z, Zhao J, Wang Q, Lun L (2021a) Original research elevated RUNX1 is a prognostic biomarker for human head and neck squamous cell carcinoma. Exp Biol Med 246:538–546

    CAS  Google Scholar 

  • Feng X, Zheng Z, Wang Y, Song G, Wang L, Zhang Z, Zhao J, Wang Q, Lun L (2021b) Elevated RUNX1 is a prognostic biomarker for human head and neck squamous cell carcinoma. Exp Biol Med 246:538

    CAS  Google Scholar 

  • Fowler M, Borazanci E, McGhee L, Pylant SW, Williams BJ, Glass J, Davis JN, Meyers S (2006) RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region. J Cell Biochem 97:1–17

    CAS  PubMed  Google Scholar 

  • Fujimoto T, Anderson K, Jacobsen SEW, Nishikawa SI, Nerlov C (2007) Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPα interaction. EMBO J 26:2361–2370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 166:85–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garfield K, LaGrange CA (2021) Renal cell cancer. StatPearls

  • Ge T, Yin M, Yang M, Liu T, Lou G (2014) MicroRNA-302b suppresses human epithelial ovarian cancer cell growth by targeting RUNX1. Cell Physiol Biochem 34:2209–2220

    CAS  PubMed  Google Scholar 

  • Genes RUNX1 Summary | CIViC (2023)

  • Green G, Carmona R, Zakeri K, Lee CH, Borgan S, Marhoon Z, Sharabi A, Mell LK (2016) Specificity of genetic biomarker studies in cancer research: a systematic review. PLoS ONE 11:12

    Google Scholar 

  • Guo Z, Zhou K, Wang Q, Huang Y, Ji J, Peng Y, Zhang X, Zheng T, Zhang Z, Chong D, Yang Z (2021) The transcription factor RUNX2 fuels YAP1 signaling and gastric cancer tumorigenesis. Cancer Sci 112:3533–3544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Yang Z, Zhao S, Zheng L, Tian Y, Lv Y (2021) Circ_0027599 elevates RUNX1 expression via sponging miR-21–5p on gastric cancer progression. Eur J Clin Invest 51:2

    Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Harewood L, Robinson H, Harris R, Jabbar Al-Obaidi M, Jalali GR, Martineau M, Moorman A, Sumption N, Richards S, Mitchell C, Harrison CJ, Hagermeijer A, Berger R, Crolla J, Kempski H (2003) Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 17:547–553

    CAS  PubMed  Google Scholar 

  • Herreño AM, Ramírez AC, Chaparro VP, Fernandez MJ, Cañas A, Morantes CF, Moreno OM, Brugés RE, Mejía JA, Bustos FJ, Montecino M, Rojas AP (2019) Role of RUNX2 transcription factor in epithelial mesenchymal transition in non-small cell lung cancer lung cancer: Epigenetic control of the RUNX2 P1 promoter. Tumor Biol 41:2

    Google Scholar 

  • Hong M, He J, Li D, Chu Y, Pu J, Tong Q, Joshi HC, Tang S, Li S (2020) Runt-related transcription factor 1 promotes apoptosis and inhibits neuroblastoma progression in vitro and in vivo. J Exp Clin Cancer Res 39:2

    Google Scholar 

  • Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J, Ficarra V (2017) Renal cell carcinoma. Nat Rev Dis Primers 3:17009

    PubMed  PubMed Central  Google Scholar 

  • Huang G, Shigesada K, Ito K, Wee HJ, Yokomizo T, Ito Y (2001) Dimerization with PEBP2β protects RUNX1/AML1 from ubiquitin–proteasome-mediated degradation. EMBO J 20:723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichi Inoue K, Ito Y (2011) Neuroblastoma cell proliferation is sensitive to changes in levels of RUNX1 and RUNX3 protein. Gene 487:151–155

    Google Scholar 

  • Ichikawa M, Asai T, Saito T, Yamamoto G, Seo S, Yamazaki I, Yamagata T, Mitani K, Chiba S, Hirai H, Ogawa S, Kurokawa M (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10:299–304

    CAS  PubMed  Google Scholar 

  • Ito Y, Bae SC, Chuang LSH (2015) The RUNX family: developmental regulators in cancer. Nat Rev Cancer 15:81–95

    CAS  PubMed  Google Scholar 

  • Janes KA (2011) RUNX1 and its understudied role in breast cancer. Cell Cycle 10:3461–3465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong D, Kim H, Ryu A, Sunwoo J, Choi S, Nam GH, Jeon S (2018) Loss of RUNX3 is significantly associated with advanced tumor grade and stage in endometrial cancers. Mol Med Rep 17:8173–8179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Tong D, Lou G, Zhang Y, Geng J (2008) Expression of RUNX3 gene, methylation status and clinicopathological significance in breast cancer and breast cancer cell lines. Pathobiology 75:244–251

    CAS  PubMed  Google Scholar 

  • Juliusson G, Hough R (2016) Leukemia. Prog Tumor Res 43:87–100

    PubMed  Google Scholar 

  • Kim WJ, Kim EJ, Jeong P, Quan C, Kim J, Li QL, Yang JO, Ito Y, Bae SC (2005) RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65:9347–9354

    CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    CAS  PubMed  Google Scholar 

  • Kudo Y, Tsunematsu T, Takata T (2011) Oncogenic role of RUNX3 in head and neck cancer. J Cell Biochem 112:387–393

    CAS  PubMed  Google Scholar 

  • Lacayo NJ, Meshinchi S, Kinnunen P, Yu R, Wang Y, Stuber CM, Douglas L, Wahab R, Becton DL, Weinstein H, Chang MN, Willman CL, Radich JP, Tibshirani R, Ravindranath Y, Sikic BI, Dahl G (2004) Gene expression profiles at diagnosis in de novo childhood AML patients identify FLT3 mutations with good clinical outcomes. Blood 104:2646–2654

    CAS  PubMed  Google Scholar 

  • Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, Putti TC, Loh M, Ko TK, Huang C, Bhalla KN, Zhu T, Ito Y, Sukumar S (2006) RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res 66:6512–6520

    CAS  PubMed  Google Scholar 

  • Lee K-S, Lee Y-S, Lee J-M, Ito K, Cinghu S, Kim J-H, Jang J-W, Li Y-H, Goh Y-M, Chi X-Z, Wee H, Lee H-W, Hosoya A, Chung J-H, Jang J-J, Kundu JK, Surh Y-J, Kim W-J, Ito Y, Jung H-S et al (2010) Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene 29:3349–3361

    CAS  PubMed  Google Scholar 

  • Lee CWL, Chuang LSH, Kimura S, Lai SK, Ong CW, Yan B, Salto-Tellez M, Choolani M, Ito Y (2011) RUNX3 functions as an oncogene in ovarian cancer. Gynecol Oncol 122:410–417

    CAS  PubMed  Google Scholar 

  • Leong DT, Lim J, Goh X, Pratap J, Pereira BP, Kwok HS, Nathan SS, Dobson JR, Lian JB, Ito Y, Voorhoeve PM, Stein GS, Salto-Tellez M, Cool SM, van Wijnen AJ (2010) Cancer-related ectopic expression of the bone-related transcription factor RUNX2 in non-osseous metastatic tumor cells is linked to cell proliferation and motility. Breast Cancer Res 12:2

    Google Scholar 

  • Levanon D, Groner Y (2004) Structure and regulated expression of mammalian RUNX genes. Oncogene 23:4211–4219

    CAS  PubMed  Google Scholar 

  • Levanon D, Eisenstein M, Groner Y (1998) Site-directed mutagenesis supports a three-dimensional model of the runt domain. J Mol Biol 277:509–512

    CAS  PubMed  Google Scholar 

  • Levanon D, Negreanu V, Lotem J, Bone KR, Brenner O, Leshkowitz D, Groner Y (2014) Transcription factor Runx3 regulates interleukin-15-dependent natural killer cell activation. Mol Cell Biol 34:1158–1169

    PubMed  PubMed Central  Google Scholar 

  • Li QL, Ito K, Sakakura C, Fukamachi H, Ichi Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A et al (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113–124

    CAS  PubMed  Google Scholar 

  • Li J, Kleeff J, Guweidhi A, Esposito I, Berberat PO, Giese T, Büchler MW, Friess H (2004) RUNX3 expression in primary and metastatic pancreatic cancer. J Clin Pathol 57:294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Zhang QY, Zou JL, Li ZW, Tian TT, Dong B, Liu XJ, Ge S, Zhu Y, Gao J, Shen L (2016) miR-215 promotes malignant progression of gastric cancer by targeting RUNX1. Oncotarget 7:4817–4828

    PubMed  Google Scholar 

  • Li Z, Fan P, Deng M, Zeng C (2018) The roles of RUNX3 in cervical cancer cells in�vitro. Oncol Lett 2:2

    Google Scholar 

  • Li Y, Sun R, Zhao X, Sun B (2021) RUNX2 promotes malignant progression in gastric cancer by regulating COL1A1. Cancer Biomark 31:227–238

    CAS  PubMed  Google Scholar 

  • Liu B, Liu J, Yu H, Wang C, Kong C (2019) Transcription factor RUNX2 regulates epithelial-mesenchymal transition and progression in renal cell carcinomas. Oncol Rep 2:2

    Google Scholar 

  • Liu C, Xu D, Xue B, Liu B, Li J, Huang J (2020a) Upregulation of RUNX1 suppresses proliferation and migration through repressing VEGFA expression in hepatocellular carcinoma. Pathol Oncol Res 26:1301–1311

    CAS  PubMed  Google Scholar 

  • Liu S, Xie F, Gan L, Peng T, Xu X, Guo S, Fu W, Wang Y, Ouyang Y, Yang J, Wang X, Zheng Y, Zhang J, Wang H (2020b) Integration of transcriptome and cistrome analysis identifies RUNX1-target genes involved in pancreatic cancer proliferation. Genomics 112:5343–5355

    CAS  PubMed  Google Scholar 

  • Liu K, Hu H, Jiang H, Zhang H, Gong S, Wei D, Yu Z (2021) RUNX1 promotes MAPK signaling to increase tumor progression and metastasis via OPN in head and neck cancer. Carcinogenesis 42:414–422

    PubMed  Google Scholar 

  • Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J, Finn RS (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7:6

    PubMed  Google Scholar 

  • López-Reig R, Fernández-Serra A, Romero I, Zorrero C, Illueca C, García-Casado Z, Poveda A, López-Guerrero JA (2019) Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel. Sci Rep 9:1–9

    Google Scholar 

  • Lu H, Jiang T, Ren K, Li ZL, Ren J, Wu G, Han X (2018) RUNX2 plays an oncogenic role in esophageal carcinoma by activating the PI3K/AKT and ERK signaling pathways. Cell Physiol Biochem 49:217–225

    CAS  PubMed  Google Scholar 

  • Ma X, Hayes E, Biswas A, Seger C, Prizant H, Hammes SR, Sen A (2017) Androgens regulate ovarian gene expression through modulation of Ezh2 expression and activity. Endocrinology 158:2944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahapatra S, Challagundla KB (2022) Neuroblastoma. StatPearls

  • Mandal S, Bandyopadhyay S, Tyagi K, Roy A (2021) Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta (BBA) Rev Cancer 1876:188619

    CAS  Google Scholar 

  • Mao S, Frank RC, Zhang J, Miyazaki Y, Nimer SD (1999) Functional and physical Interactions between AML1 proteins and an ETS protein, MEF: implications for the pathogenesis of t(8;21)-positive leukemias. Mol Cell Biol 19:3635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medina MA, Ugarte GD, Vargas MF, Avila ME, Necuñir D, Elorza AA, Gutiérrez SE, de Ferrari G (2016) Alternative RUNX1 promoter regulation by Wnt/β-catenin signaling in leukemia cells and human hematopoietic progenitors. J Cell Physiol 231:1460–1467

    CAS  PubMed  Google Scholar 

  • Mithoowani H, Febbraro M (2022) Non-small-cell lung cancer in 2022: a review for general practitioners in oncology. Curr Oncol 2022(29):1828–1839

    Google Scholar 

  • Mukkamalla SKR, Recio-Boiles A, Babiker HM (2022) Esophageal cancer, essence of anesthesia. Practice 65:2

    Google Scholar 

  • Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JHM, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779

    CAS  PubMed  Google Scholar 

  • Nevadunsky NS, Barbieri JS, Kwong J, Merritt MA, Welch WR, Berkowitz RS, Mok SC (2009) RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol Oncol 112:325–330

    CAS  PubMed  Google Scholar 

  • Niini T, Kanerva J, Vettenranta K, Saarinen-Pihkala UM, Knuutila S (2000) AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia. Haematologica 85:362–366

    CAS  PubMed  Google Scholar 

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84:321–330

    CAS  PubMed  Google Scholar 

  • Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T, Sakaguchi S (2006) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:7136

    Google Scholar 

  • Osato M (2004) Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23:4284–4296

    CAS  PubMed  Google Scholar 

  • Otálora-Otálora BA, Henríquez B, López-Kleine L, Rojas A (2019) RUNX family: oncogenes or tumor suppressors. Oncol Rep 42:3

    PubMed  PubMed Central  Google Scholar 

  • Otani S, Date Y, Ueno T, Ito T, Kajikawa S, Omori K, Taniuchi I, Umeda M, Komori T, Toguchida J, Ito K (2023) The oncogenic Runx3-Myc axis defines p53-deficient osteosarcomagenesis

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GWH, Beddington RSP, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    CAS  PubMed  Google Scholar 

  • Ouyang P, Wu K, Su L, An W, Bie Y, Zhang H, Kang H, Jiang E, Zhu W, Yao Y, Hu X, Chen Z, Wang S (2019) Inhibition of human cervical cancer cell invasion by IL-37 involving runt related transcription factor 2 suppression. Ann Transl Med 7:568–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, Sang M (2018) Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer 18:2

    Google Scholar 

  • Pande S, Browne G, Padmanabhan S, Zaidi SK, Lian JB, van Wijnen AJ, Stein JL, Stein GS (2013) Oncogenic cooperation between PI3K/Akt signaling and transcription factor Runx2 promotes the invasive properties of metastatic breast cancer cells. J Cell Physiol 228:1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap J, Lian JB, Stein GS (2011) Metastatic bone disease: role of transcription factors and future targets. Bone 48:30

    CAS  PubMed  Google Scholar 

  • Prater S, McKeon B (2022) Osteosarcoma. StatPearls

  • Puckett Y, Garfield K (2022) Pancreatic cancer. StatPearls

  • Qi B, Dong Y, Qiao XL (2020) Effects of miR-18a on proliferation and apoptosis of gastric cancer cells by regulating RUNX1. Eur Rev Med Pharmacol Sci 24:9957–9964

    CAS  PubMed  Google Scholar 

  • Qin X, Jiang Q, Matsuo Y, Kawane T, Komori H, Moriishi T, Taniuchi I, Ito K, Kawai Y, Rokutanda S, Izumi S, Komori T (2015) Cbfb regulates bone development by stabilizing Runx family proteins. J Bone Miner Res 30:706–714

    CAS  PubMed  Google Scholar 

  • Ramsey J, Butnor K, Peng Z, Leclair T, van der Velden J, Stein G, Lian J, Kinsey CM (2018) Loss of RUNX1 is associated with aggressive lung adenocarcinomas. J Cell Physiol 233:3487–3497

    CAS  PubMed  Google Scholar 

  • Rehman AU, Iqbal MA, Sattar RSA, Saikia S, Kashif M, Ali WM, Medhi S, Saluja SS, Husain SA (2020) Elevated expression of RUNX3 co-expressing with EZH2 in esophageal cancer patients from India. Cancer Cell Int 20:445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichert CO, de Freitas FA, Levy D, Bydlowski SP (2021) Oxysterols and mesenchymal stem cell biology. Vitam Horm 116:409–436

    PubMed  Google Scholar 

  • Rennert J, Coffman JA, Mushegian AR, Robertson AJ (2003) The evolution of Runx genes I A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol Biol 3:1–11

    Google Scholar 

  • Robinson HM, Broadfield ZJ, Cheung KL, Harewood L, Harris RL, Jalali GR, Martineau M, Moorman A, Taylor KE, Richards S, Mitchell C, Harrison CJ (2003) Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia 17:2249–2250

    CAS  PubMed  Google Scholar 

  • Rooney N, Riggio AI, Mendoza-Villanueva D, Shore P, Cameron ER, Blyth K (2017) Runx genes in breast cancer and the mammary lineage. Adv Exp Med Biol 962:353–368

    CAS  PubMed  Google Scholar 

  • Rooney N, Mason SM, McDonald L, Däbritz JHM, Campbell KJ, Hedley A, Howard S, Athineos D, Nixon C, Clark W, Leach JDG, Sansom OJ, Edwards J, Cameron ER, Blyth K (2020) RUNX1 is a driver of renal cell carcinoma correlating with clinical outcome. Cancer Res 80:2325–2339

    CAS  PubMed  Google Scholar 

  • RUNX3 (2023) Runt-related transcription factor 3—Homo sapiens (Human) - RUNX3 gene & protein

  • Sadikovic B, Thorner P, Chilton-MacNeill S, Martin JW, Cervigne NK, Squire J, Zielenska M (2010) Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer 10:2

    Google Scholar 

  • Sakakura C, Hagiwara A, Miyagawa K, Nakashima S, Yoshikawa T, Kin S, Nakase Y, Ito K, Yamagishi H, Yazumi S, Chiba T, Ito Y (2005) Frequent downregulation of the runt domain transcription factors RUNX1, RUNX3 and their cofactor CBFB in gastric cancer. Int J Cancer 113:221–228

    CAS  PubMed  Google Scholar 

  • Sase T, Suzuki T, Miura K, Shiiba K, Sato I, Nakamura Y, Takagi K, Onodera Y, Miki Y, Watanabe M, Ishida K, Ohnuma S, Sasaki H, Sato R, Karasawa H, Shibata C, Unno M, Sasaki I, Sasano H (2012) Runt-related transcription factor 2 in human colon carcinoma: a potent prognostic factor associated with estrogen receptor. Int J Cancer 131:2284–2293

    CAS  PubMed  Google Scholar 

  • Scheitz CJF, Lee TS, McDermitt DJ, Tumbar T (2012) Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J 31:4124–4139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo W, Tanaka H, Miyamoto C, Levanon D, Groner Y, Taniuchi I (2012) Roles of VWRPY motif-mediated gene repression by Runx proteins during T-cell development. Immunol Cell Biol 90:827–830

    CAS  PubMed  Google Scholar 

  • Song J, Liu Y, Wang T, Li B, Zhang S (2020) MiR-17–5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer. Biomed Pharmacother 128:2

    Google Scholar 

  • de Sousa VPL, Chaves CBP, Huguenin JFL, de Barros Moreira FC, de Reis BSB, Chimelli L, Bergmann A, de Almeida Simao T, Pinto LFR (2014) ERM/ETV5 and RUNX1/AML1 expression in endometrioid adenocarcinomas of endometrium and association with neoplastic progression. 15: 888–894. Doi: https://doi.org/10.4161/Cbt.28879

  • Spender LC, Cornish GH, Sullivan A, Farrell PJ (2002) Expression of transcription factor AML-2 (RUNX3, CBFα-3) is induced by epstein-barr virus EBNA-2 and correlates with the B-cell activation phenotype. J Virol 76:4919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spender LC, Whiteman HJ, Karstegl CE, Farrell PJ (2005) Transcriptional cross-regulation of RUNX1 by RUNX3 in human B cells. Oncogene 24:1873–1881

    CAS  PubMed  Google Scholar 

  • Squire JA, Martin JW, Zielenska M, Stein GS, van Wijnen AJ (2011) The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011:13

    Google Scholar 

  • Tandon M, Gokul K, Ali SA, Chen Z, Lian J, Stein GS, Pratap J (2012) Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer 11:2

    Google Scholar 

  • Tsunematsu T, Kudo Y, Iizuka S, Ogawa I, Fujita T, Kurihara H, Abiko Y, Takata T (2009) RUNX3 has an oncogenic role in head and neck cancer. PLoS ONE 4:e5892

    PubMed  PubMed Central  Google Scholar 

  • Vaillant F, Blyth K, Andrew L, Neil JC, Cameron ER (2002) Enforced expression of Runx2 perturbs T cell development at a stage coincident with beta-selection. J Immunol 169:2866–2874

    CAS  PubMed  Google Scholar 

  • Wai PY, Mi Z, Gao C, Guo H, Marroquin C, Kuo PC (2006) Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. J Biol Chem 281:18973–18982

    CAS  PubMed  Google Scholar 

  • Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marín-Padilla M, Sharpe AH, Speck NA (1996) The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87:697–708

    CAS  PubMed  Google Scholar 

  • Wang L, Brugge JS, Janes KA (2011) Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proc Natl Acad Sci U S A 108:E803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Liu Z, Woo CW, Li Z, Wang L, Wei JS, Marquez VE, Bates SE, Jin Q, Khan J, Ge K, Thiele CJ (2012) EZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res 72:315–324

    CAS  PubMed  Google Scholar 

  • Wang ZQ, Keita M, Bachvarova M, Gobeil S, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Trinh XB, Bachvarov D (2013) Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells. PLoS ONE 8:2

    CAS  Google Scholar 

  • Wang Y, Godec J, Ben-Aissa K, Cui K, Zhao K, Pucsek AB, Lee YK, Weaver CT, Yagi R, Lazarevic V (2014) The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-γ-producing T helper 17 cells. Immunity 40:355–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Qin JJ, Voruganti S, Nag S, Zhou J, Zhang R (2015) Polycomb group (PcG) proteins and human cancers: multifaceted functions and therapeutic implications. Med Res Rev 35:1220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Yu W, Huang T, Zhu Y, Huang C (2016) RUNX2 promotes hepatocellular carcinoma cell migration and invasion by upregulating MMP9 expression. Oncol Rep 36:2777–2784

    CAS  PubMed  Google Scholar 

  • Wang G, Zhao D, Spring DJ, Depinho RA (2018) Genetics and biology of prostate cancer. Genes Dev 32:1105–1140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb PM, Jordan SJ (2017) Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol 41:3–14

    PubMed  Google Scholar 

  • Wen J, Min X, Shen M, Hua Q, Han Y, Zhao L, Liu L, Huang G, Liu J, Zhao X (2019) ACLY facilitates colon cancer cell metastasis by CTNNB1. J Exp Clin Cancer Res 38:2

    Google Scholar 

  • Whittle MC, Hingorani SR (2017) Runx3 and cell fate decisions in pancreas cancer. Adv Exp Med Biol 962:333–352

    CAS  PubMed  Google Scholar 

  • Whittle MC, Izeradjene K, Rani PG, Feng L, Carlson MA, DelGiorno KE, Wood LD, Goggins M, Hruban RH, Chang AE, Calses P, Thorsen SM, Hingorani SR (2015) RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell 161:1345–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Li C, Zhu G, Wang Y, Jules J, Lu Y, McConnell M, Wang YJ, Shao JZ, Li YP, Chen W (2014) Deletion of core-binding factor β (Cbfβ) in mesenchymal progenitor cells provides new insights into Cbfβ/Runxs complex function in cartilage and bone development. Bone 65:49–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Zhang J, Zheng Y, Ma C, Liu XE, Sun X (2018) miR-216a-3p inhibits the proliferation, migration, and invasion of human gastric cancer cells via targeting RUNX1 and activating the NF-κB signaling pathway. Oncol Res 26:157–171

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ye Z, Zou Z, Xiao G, Luo G, Yang H (2014) Clinicopathological significance of RUNX3 gene hypermethylation in hepatocellular carcinoma. Tumor Biol 35:10333–10340

    CAS  Google Scholar 

  • Yang Y, Bai Y, He Y, Zhao Y, Chen J, Ma L, Pan Y, Hinten M, Zhang J, Jeffrey Karnes R, Kohli M, Westendorf JJ, Li B, Zhu R, Huang H, Xu W (2018) PTEN loss promotes intratumoral androgen synthesis and tumor microenvironment remodeling via aberrant activation of RUNX2 in castration-resistant prostate cancer. Clin Cancer Res 24:834–846

    CAS  PubMed  Google Scholar 

  • Yu J, Tian X, Chang J, Liu P, Zhang R (2017) RUNX3 inhibits the proliferation and metastasis of gastric cancer through regulating miR-182/HOXA9. Biomed Pharmacother 96:782–791

    CAS  PubMed  Google Scholar 

  • Zhang X, Wang L, Zeng X, Fujita T, Liu W (2017) Runx3 inhibits melanoma cell migration through regulation of cell shape change. Cell Biol Int 41:1048–1055

    CAS  PubMed  Google Scholar 

  • Zhang W, Ma Q, Long B, Sun Z, Liu L, Lin D, Zhao M (2021) Runt-related transcription factor 3 promotes acute myeloid leukemia progression. Front Oncol 11:2

    Google Scholar 

  • Zhao Y, Zhang T, Zhao Y, Zhou J (2020) Distinct association of RUNX family expression with genetic alterations and clinical outcome in acute myeloid leukemia. Cancer Biomark 29:387–397

    CAS  PubMed  Google Scholar 

  • Zheng J, Mei Y, Zhai G, Zhao N, Jia D, Fan Y (2020) Downregulation of RUNX3 has a poor prognosis and promotes tumor progress in kidney cancer. Urol Oncol Semin Original Investig 38(740):e11-740.e20

    Google Scholar 

  • Ziros PG, Basdra EK, Papavassiliou AG (2008) Runx2: of bone and stretch. Int J Biochem Cell Biol 40:1659–1663

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ramalingaswami Re-entry fellowship Grant (BT/HRD/35/02/2006), Department of Biotechnology, Govt. of India to AR.

Funding

This work was supported by the Ramalingaswami Re-entry fellowship Grant (BT/HRD/35/02/2006), Department of Biotechnology, Govt. of India to AR.

Author information

Authors and Affiliations

Authors

Contributions

AR conceptualized, prepared and supervised the manuscript and figures. SC, SB and VJ wrote the manuscript. KT, AS, AW and SM critically reviewed and edited the manuscript. AR prepared the final draft of the manuscript. All authors have reviwed and approved the final draft of the manuscript. All authors confirm that no conflict of interest remains.

Corresponding author

Correspondence to Adhiraj Roy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Chauhan, S., Bhattacharya, S. et al. Runt-related transcription factors in human carcinogenesis: a friend or foe?. J Cancer Res Clin Oncol 149, 9409–9423 (2023). https://doi.org/10.1007/s00432-023-04769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04769-0

Keywords

Navigation