Skip to main content

Advertisement

Log in

Candidate lncRNA–miRNA–mRNA network in predicting hepatocarcinogenesis with cirrhosis: an integrated bioinformatics analysis

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to explore the potential competing endogenous RNA (ceRNA) network in forecasting HCC development in patients with cirrhosis through a comprehensive bioinformatic analysis.

Methods

Data mining from GEO and TCGA databases was employed to dig a spectrum of differentially expressed mRNA, lncRNA and miRNA profiles. Their expression was confirmed by RT-PCR in matched HCC cohorts (n = 6/group). The ceRNA network was constructed by co-expression analysis. Their reciprocal regulations and their roles in epithelial-to-mesenchymal transition (EMT) process were validated by gain- and loss-of-function experiments at the cellular level. Kaplan–Meier method was applied to reveal prognostic values.

Results

By intersecting differentially expressed genes (DEGs) in GEO and TCGA data sets and Pearson correlation analysis, 20 mRNAs, 24 miRNAs and 41 lncRNAs were identified. Of these, FOXD2-AS1, BLVRA and CYTH2 were markedly upregulated in HCC tissues and HCC cells with high metastatic potential (MHCC97H) compared with their adjacent normal/cirrhotic tissues and L02 and MHCC97L cells. However, dysregulated miR-139-5p exhibited the opposite expression pattern. Using miRanda algorithms, FOXD2-AS1, BLVRA and CYTH2 showed potential binding sites for miR-139-5p. FOXD2-AS1 knockdown induced a marked increase in miR-139-5p and EMT inhibition. The loss of miR-139-5p led to an increase in BLVRA and CYTH2 expression and EMT process. Conversely, miR-139-5p overexpression suppressed BLVRA and CYTH expression and EMT process. FOXD2-AS1, miR-139-5p, BLVRA and CYTH2 highly correlated with prognosis in patients with HCC.

Conclusion

FOXD2-AS1/miR-139-5p/BLVRA or CYTH2 axis might be the underlying molecular mechanism that dissects HCC development caused by cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ceRNA:

Competing endogenous RNA

EMT:

Epithelial-to-mesenchymal transition

DEG:

Differentially expressed genes

HCC:

Hepatocellular carcinoma

ncRNA:

Non-coding RNAs

GEO:

Gene Expression Omnibus

TCGA:

The Cancer Genome Atlas

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomae

References

  • Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  CAS  Google Scholar 

  • Barrett T, Suzek TO, Troup DB et al (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res 33(suppl 1):D562–D566

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  • Borzio M, Bruno S, Roncalli M et al (1995) Liver cell dysplasia is a major risk factor for hepatocellular carcinoma in cirrhosis: a prospective study. Gastroenterology 108(3):812–817

    Article  CAS  Google Scholar 

  • Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6:2127–2132

    Article  CAS  Google Scholar 

  • Chen T, Chen J, Zhu Y et al (2019) CD163, a novel therapeutic target, regulates the proliferation and stemness of glioma cells via casein kinase 2. Oncogene 38(8):1183–1199

    Article  CAS  Google Scholar 

  • Donato MF, Arosio E, Del Ninno E et al (2001) High rates of hepatocellular carcinoma in cirrhotic patients with high liver cell proliferative activity. Hepatology 34(3):523–528

    Article  CAS  Google Scholar 

  • El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    Article  CAS  Google Scholar 

  • European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56:908–943

    Article  Google Scholar 

  • Fan H, Lv P, Mu T et al (2018) LncRNA n335586/miR-924/CKMT1A axis contributes to cell migration and invasion in hepatocellular carcinoma cells. Cancer Lett 429:89–99

    Article  CAS  Google Scholar 

  • Fattovich G, Stroffolini T, Zagni I et al (2004) Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127(5, Suppl 1):S35–S50

    Article  Google Scholar 

  • Fu N, Niu X, Wang Y et al (2016) Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis. Discov Med 22(119):29–42

    PubMed  Google Scholar 

  • Han X, Hong Y, Zhang K (2018) TUG1 is involved in liver fibrosis and activation of HSCs by regulating miR-29b. Biochem Biophys Res Commun 503(3):1394–1400

    Article  CAS  Google Scholar 

  • Hanson A, Wilhelmsen D, DiStefano JK (2018) The role of long non-coding RNAs (lncRNAs) in the development and progression of fibrosis associated with nonalcoholic fatty liver disease (NAFLD). Noncoding RNA 4(3):18

    PubMed Central  Google Scholar 

  • Hua S, Lei L, Deng L et al (2018) miR-139-5p inhibits aerobic glycolysis, cell proliferation, migration, and invasion in hepatocellular carcinoma via a reciprocal regulatory interaction with ETS1. Oncogene 37(12):1624–1636

    Article  CAS  Google Scholar 

  • Huang Y, Xiang B, Liu Y et al (2018) LncRNA CDKN2B-AS1 promotes tumor growth and metastasis of human hepatocellular carcinoma by targeting let-7c-5p/NAP1L1 axis. Cancer Lett 437:56–66

    Article  CAS  Google Scholar 

  • Hucke F, Sieghart W, Schoniger-Hekele M et al (2011) Clinical characteristics of patients with hepatocellular carcinoma in Austria—is there a need for a structured screening program? Wien Klin Wochenschr 123:542–551

    Article  Google Scholar 

  • Jia Y, Han S, Li J et al (2017) IRF8 is the target of SIRT1 for the inflammation response in macrophages. Innate Immun 23(2):188–195

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  • Kubícková KN, Subhanová I, Konícková R et al (2016) Predictive role BLVRA mRNA expression in hepatocellular cancer. Ann Hepatol 15(6):881–887

    PubMed  Google Scholar 

  • Kumar L, Futschik ME (2007) Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2(1):5–7

    Article  Google Scholar 

  • Lendvai G, Szekerczés T, Gyöngyösi B et al (2019) MicroRNA expression in focal nodular hyperplasia in comparison with cirrhosis and hepatocellular carcinoma. Pathol Oncol Res 25(3):1103–1109

    Article  CAS  Google Scholar 

  • Mo Y, He L, Lai Z et al (2018) LINC01287/miR-298/STAT3 feedback loop regulates growth and the epithelial-to-mesenchymal transition phenotype in hepatocellular carcinoma cells. J Exp Clin Cancer Res 37(1):149

    Article  Google Scholar 

  • Qi X, Zhang DH, Wu N et al (2015) ceRNA in cancer: possible functions and clinical implications. J Med Genet 52(10):710–718

    Article  Google Scholar 

  • Salmena L, Poliseno L, Tay Y et al (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  Google Scholar 

  • Sana J, Faltejskova P, Svoboda M et al (2012) Novel classes of non-coding RNAs and cancer. J Transl Med 10:103

    Article  CAS  Google Scholar 

  • Sato M, Ikeda H, Uranbileg B et al (2016) Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human. Sci Rep 6:32119

    Article  CAS  Google Scholar 

  • Schrader J, Gordon-Walker TT, Aucott RL et al (2011) Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53(4):1192–1205

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  • Sharma MC (2019) Annexin A2 (ANXA2): an emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer 144(9):2074–2081

    Article  CAS  Google Scholar 

  • Smyth GK. Limma: linear models for microarray data. In: Bioinformatics & computational biology solutions using R & Bioconductor 2011:397–420

  • Tang Y, Li M, Wang J et al (2015) CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. BioSystems 127:67–72

    Article  CAS  Google Scholar 

  • Wu MS, Wang CH, Tseng FC et al (2017) Interleukin-17F expression is elevated in hepatitis C patients with fibrosis and hepatocellular carcinoma. Infect Agent Cancer 12:42

    Article  Google Scholar 

  • Xu K, Zhang Z, Qian J et al (2019) LncRNA FOXD2-AS1 plays an oncogenic role in hepatocellular carcinoma through epigenetically silencing CDKN1B (p27) via EZH2. Exp Cell Res 380(2):198–204

    Article  CAS  Google Scholar 

  • Yeung TL, Tsai CC, Leung CS et al (2018) ISG15 promotes ERK1 ISGylation, CD8+ T cell activation and suppresses ovarian cancer progression. Cancers (Basel) 10(12):464

    Article  CAS  Google Scholar 

  • Zhang K, Shi ZM, Chang YN et al (2014) The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene 547:1–9

    Article  CAS  Google Scholar 

  • Zhang Z, Wang S, Liu W (2018) EMT-related long non-coding RNA in hepatocellular carcinoma: a study with TCGA database. Biochem Biophys Res Commun 503(3):1530–1536

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Innovation Fund of Science and Technology Commission of Shanghai Municipality (No. 15411950501, 15411950507 and 17140902700).

Author information

Authors and Affiliations

Authors

Contributions

SYC conceived and designed the study. RZ, YYJ and KX performed the experiments. RZ, YYJ, KX and JW made statistical analysis. RZ and SYC analyzed the data and wrote the manuscript. RZ, XQH and SYC revised the manuscript.

Corresponding author

Correspondence to Shi-yao Chen.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Jiang, Yy., Xiao, K. et al. Candidate lncRNA–miRNA–mRNA network in predicting hepatocarcinogenesis with cirrhosis: an integrated bioinformatics analysis. J Cancer Res Clin Oncol 146, 87–96 (2020). https://doi.org/10.1007/s00432-019-03090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-019-03090-z

Keywords

Navigation