Skip to main content

Advertisement

Log in

Molecular classification and subtype-specific characterization of skin cutaneous melanoma by aggregating multiple genomic platform data

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Traditional classification of melanoma is widely utilized with little apparent results making the development of robust classifiers that can guide therapies an urgency. Successful seminal research on classification has provided a wider understanding of cancer from multiple molecular profiles, respectively. However, it may ignore the complementary nature of the information provided by different types of data, which motivated us to subtype melanoma by aggregating multiple genomic platform data.

Methods

Aggregating three omics data of 328 melanoma samples, melanoma subtyping was performed by three clustering methods. Differences across subtypes were extracted by functional enrichment, epigenetically silencing, gene mutations and clinical features. Subtypes were further distinguished by putative biomarkers.

Results

Functional enrichment of the subtype-specific differential expression genes endowed subtypes new designation: immune, melanin and ion, in which the first subtype was enriched for immune system, the second was characterized by melanin and pigmentation, and the third was enriched for ion-involved transmission process. Subtypes also differed in age, Breslow thickness, tumor site, mutation frequency of BRAF, PTGS2, CDKN2A, CDKN2B and incidence of epigenetically silencing for IL15RA, EPSTI1, LXN, CDKN1B genes.

Conclusions

Skin cutaneous melanoma can be robustly divided into three subtypes by SNFCC+. Compared with the TCGA classification derived from gene expression, the subtypes we presented share concordance, but new traits are excavated. Such a genomic classification offers insights to further personalize therapeutic decision-making and melanoma management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SKCM:

Skin cutaneous melanoma

TCGA:

The Cancer Genome Atlas

CNV:

Copy number variation

DEG:

Differential expression gene

SNF:

Similarity network fusion

CC:

Consensus clustering

SNFCC+ :

Similarity network fusion plus consensus clustering

HC:

Hierarchical clustering

NMF:

Non-negative matrix factorization

FDR:

False discovery rate

GDC:

Genomic data commons

DAVID:

Database for annotation, visualization and integrated discovery

References

  • Allen D, Lepple-Wienhues A, Cahalan M (1997) Ion channel phenotype of melanoma cell lines. J Membr Biol 155:27–34

    Article  PubMed  CAS  Google Scholar 

  • Assenov Y, Müller F, Lutsik P, Walter J, Lengauer T, Bock C (2014) Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods 11:1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Austin PF, Cruse CW, Lyman G, Schroer K, Glass F, Reintgen DS (1994) Age as a prognostic factor in the malignant melanoma population. Ann Surg Oncol 1:487–494

  • Azimi F et al (2012) Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 30:2678–2683

    Article  PubMed  Google Scholar 

  • Balch CM (1992) Cutaneous melanoma: prognosis and treatment results worldwide. Semin Surg Oncol 8:400–414

  • Balch CM et al (2001) Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19:3622–3634

    Article  PubMed  CAS  Google Scholar 

  • Balch CM et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatia P, Friedlander P, Zakaria EA, Kandil E (2015) Impact of BRAF mutation status in the prognosis of cutaneous melanoma: an area of ongoing research. Ann Transl Med 3:24

    PubMed  PubMed Central  Google Scholar 

  • Bonafede E (2015) Differential expression analysis for sequence count data via mixtures of negative binomials. Alma

  • Brunet J-P, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci 101:4164–4169

  • Bryois J et al (2014) Cis and trans effects of human genomic variants on gene expression. PLoS Genet 10:e1004461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ChantoôMe AL, Potier-Cartereau M, Roger SB, Vandier C, Soriani O, Joulin V (2013) Ion channels as promising therapeutic targets for melanoma. InTech 20:429–460

    Google Scholar 

  • Cin H et al (2011) Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol 121:763–774

    Article  PubMed  CAS  Google Scholar 

  • Clark WH, From L, Bernardino EA, Mihm MC (1969) The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 29:705–727

    PubMed  Google Scholar 

  • Conteduca G et al (2010) The role of AIRE polymorphisms in melanoma. Clin Immunol 136:96–104

    Article  PubMed  CAS  Google Scholar 

  • Fecher LA, Cummings SD, Keefe MJ, Alani RM (2007) Toward a molecular classification of melanoma. J Clin Oncol 25:1606–1620

    Article  PubMed  CAS  Google Scholar 

  • Fisher NM, Schaffer JV, Berwick M, Bolognia JL (2005) Breslow depth of cutaneous melanoma: impact of factors related to surveillance of the skin, including prior skin biopsies and family history of melanoma. J Am Acad Dermatol 53:393–406

    Article  PubMed  Google Scholar 

  • Gao J et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg K et al (2016) Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Human Pathol 54:157–164

    Article  CAS  Google Scholar 

  • Gomez-Lira M et al (2014) Association of promoter polymorphism – 765G> C in the PTGS2 gene with malignant melanoma in Italian patients and its correlation to gene expression in dermal fibroblasts. Exp Dermatol 23:766–768

    Article  PubMed  CAS  Google Scholar 

  • Haluska F, Pemberton T, Ibrahim N, Kalinsky K (2007) The RTK/RAS/BRAF/PI3K pathways in melanoma: biology, small molecule inhibitors, and potential applications. Semin Oncol 34:546–554

    Article  PubMed  CAS  Google Scholar 

  • Hawkes JE et al (2013) Report of a novel OCA2 gene mutation and an investigation of OCA2 variants on melanoma risk in a familial melanoma pedigree. J Dermatol Sci 69:30–37

    Article  PubMed  CAS  Google Scholar 

  • Hinoue T et al (2012) Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 22:271–282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holm K et al (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12(3):R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inamdar GS, Madhunapantula SV, Robertson GP (2010) Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol 80:624–637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Innominato PF, Libbrecht L, van den Oord JJ (2001) Expression of neurotrophins and their receptors in pigment cell lesions of the skin. J Pathol 194:95–100

    Article  PubMed  CAS  Google Scholar 

  • Inozume T et al (2005) Novel melanoma antigen, FCRL/FREB, identified by cDNA profile comparison using DNA chip are immunogenic in multiple melanoma patients. Int J Cancer 114:283–290

    Article  PubMed  CAS  Google Scholar 

  • Jacquelot N et al (2016) Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. J Clin Investig 126:921–937

    Article  PubMed  Google Scholar 

  • Jayakumar A, Rauvolfova J, Bao H, Fokt I, Skora S, Heimberger A, Priebe W (2013) Abstract 3251: Blockade of HIF-1 with a small molecule inhibitor WP1066 in melanoma. Cancer Res 73:3251–3251

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010 CA: a cancer. J Clin 60:277–300

    Google Scholar 

  • Jonsson G et al (2010) Gene expression profiling-based identification of molecular subtypes in stage IV Melanomas with different clinical outcome clinical cancer research an official. J Am Assoc Cancer Res 16:3356–3367

    Google Scholar 

  • Journe F et al (2011) TYRP1 mRNA expression in melanoma metastases correlates with clinical outcome. Br J Cancer 105:1726–1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawaguchi M, Hearing VJ (2011) The roles of ADAMs family proteinases in skin diseases. Enzyme Res 2011:482498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koh SS et al (2012) Differential gene expression profiling of primary cutaneous melanoma and sentinel lymph node metastases. Mod Pathol 25:828–837

    Article  PubMed  CAS  Google Scholar 

  • Li M, Xiong Z-G (2011) Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 3:156–166

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li T et al (2013) Identification of epithelial stromal interaction 1 as a novel effector downstream of Krüppel-like factor 8 in breast cancer invasion and metastasis. Oncogene 33:4746–4755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li FJ et al (2014) Emerging Roles for the FCRL Family Members in Lymphocyte Biology and Disease. Curr Top Microbiol Immunol 382:29–50

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu W, Peng Y, Tobin DJ (2013) A new 12-gene diagnostic biomarker signature of melanoma revealed by integrated microarray analysis PeerJ 1:e49

  • Lodolce J et al (2002) Interleukin-15 and the regulation of lymphoid homeostasis. Mol Immunol 39:537–544

    Article  PubMed  CAS  Google Scholar 

  • Macià A, Herreros J, Martí RM, Cantí C (2015) Calcium channel expression and applicability as targeted therapies in melanoma. Biomed Res Int 2015:587135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maurer M, Somasundaram R, Herlyn M, Wagner SN (2012) Immunotargeting of tumor subpopulations in melanoma patients: A paradigm shift in therapy approaches. Oncoimmunology 1:1454–1456

    Article  PubMed  PubMed Central  Google Scholar 

  • McGovern VJ et al (1973) The classification of malignant melanoma and its histologic reporting. Cancer 32:1446–1457

  • Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52:91–118

    Article  Google Scholar 

  • Palmieri G (2012) Molecular classification of patients with cutaneous melanoma: a reality. J Mol Biomark Diagn 3:e110

    Google Scholar 

  • Payne AS, Cornelius LA (2002) The role of chemokines in melanoma tumor growth and metastasis. J Investig Dermatol 118:915–922

    Article  PubMed  CAS  Google Scholar 

  • Rogers HW, Weinstock MA, Feldman SR, Coldiron BM (2015) Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US Population, 2012. Jama Dermatol 151:1081–1086

    Article  PubMed  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Scolyer RA, Long GV, Thompson JF (2011) Evolving concepts in melanoma classification and their relevance to multidisciplinary melanoma patient care. Mol Oncol 5:124–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Slominski R, Zmijewski M, Slominski AT (2015) On the role of melanin pigment in melanoma. Exp Dermatol 24:258–259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stern RS (2010) Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch Dermatol 146:279–282

    Article  PubMed  Google Scholar 

  • TCGA (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696

    Article  CAS  Google Scholar 

  • Verreault M, Webb MS, Ramsay EC, Bally MB (2006) Gene silencing in the development of personalized cancer treatment: the targets, the agents and the delivery systems. Curr Gene Ther 6:505–533

    Article  PubMed  CAS  Google Scholar 

  • Wang B et al (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11:333–337

    Article  PubMed  CAS  Google Scholar 

  • Xu T et al (2017) CancerSubtypes: an R/Bioconductor package for molecular cancer subtype identification, validation, and visualization. Bioinformatics 33:3131–3133

    Article  PubMed  Google Scholar 

  • Zhao Q, Shi X, Xie Y, Huang J, Shia B, Ma S (2015) Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA. Brief Bioinform 16:291–303

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Social Science Fund under award No. 16BTJ021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Lu, Fei Wang or Fangrong Yan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Availability of data and material

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request and the data sets are also available in the Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhang, Q., Wang, Y. et al. Molecular classification and subtype-specific characterization of skin cutaneous melanoma by aggregating multiple genomic platform data. J Cancer Res Clin Oncol 144, 1635–1647 (2018). https://doi.org/10.1007/s00432-018-2684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-018-2684-7

Keywords

Navigation