Skip to main content

Advertisement

Log in

Down-regulation of ALDH1A3, CD44 or MDR1 sensitizes resistant cancer cells to FAK autophosphorylation inhibitor Y15

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Focal adhesion kinase is an important survival signal in cancer. Recently, we demonstrated that the autophosphorylation inhibitor of FAK, Y15, effectively inhibited cancer cell growth. We detected many cancer cell lines sensitive to Y15 and also detected several cell lines such as colon cancer Lovo-1 and thyroid K1 more resistant to Y15. We sought to determine the main players responsible for the resistance.

Methods

To reveal the signaling pathways responsible for the increased resistance of these cancer cells to the inhibitor of FAK, we performed a microarray gene profile study in both sensitive and resistant cells treated with Y15 inhibitor to compare with the more sensitive cells.

Results

Among unique genes up-regulated by Y15 in Lovo-1 and K1 resistant cells, a stem cell marker—ALDH1A3—was detected to be up-regulated >twofold. The resistant Lovo-1 and thyroid K1 cells overexpressed ALDH1A3 and CD44 versus sensitive cells. Treatment with ALDH1A3 siRNAs or ALDH inhibitor, DEAB sensitized resistant Lovo-1 and K1 cells to Y15 inhibitor, decreased viability and caused G1 cell cycle arrest more effectively than each agent alone. In addition, down-regulation of CD44 that was overexpressed in resistant Lovo-1 cells with CD44 siRNA effectively decreased the viability of cells in combination with Y15. In addition, down-regulation of overexpressed MDR1 with specific inhibitor, PSC-833, also sensitized resistant colon cancer cells to Y15.

Conclusions

This report clearly demonstrates the mechanism of resistance to FAK autophosphorylation inhibitor and the mechanism to overcome it that is important for developing FAK-targeted therapy approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FAK:

Focal adhesion kinase

ALDH:

Aldehyde dehydrogenase

MDR1:

Multidrug resistance gene

siRNA:

Small interfering RNA

References

  • Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    CAS  PubMed  Google Scholar 

  • Beierle EA, Ma X, Stewart J, Nyberg C, Trujillo A et al (2010) Inhibition of focal adhesion kinase decreases tumor growth in human neuroblastoma. Cell Cycle 9:1005–1015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourguignon LY, Peyrollier K, Xia W, Gilad E (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283:17635–17651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cance WG, Kurenova E, Marlowe T, Golubovskaya V (2013) Disrupting the scaffold to improve focal adhesion kinase-targeted cancer therapeutics. Sci Signal 6:pe10

    Article  PubMed Central  PubMed  Google Scholar 

  • Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q et al (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5:e10277

    Article  PubMed Central  PubMed  Google Scholar 

  • Dylla SJ, Beviglia L, Park IK, Chartier C, Raval J et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3:e2428

    Article  PubMed Central  PubMed  Google Scholar 

  • Fonar Y, Gutkovich YE, Root H, Malyarova A, Aamar E et al (2011) Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate. Mol Biol Cell 22:2409–2421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gabarra-Niecko V, Schaller MD, Dunty JM (2003) FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev 22:359–374

    Article  CAS  PubMed  Google Scholar 

  • Golubovskaya VM, Cance WG (2007) Focal adhesion kinase and p53 signaling in cancer cells. Int Rev Cytol 263:103–153

    Article  CAS  PubMed  Google Scholar 

  • Golubovskaya VM, Nyberg C, Zheng M, Kweh F, Magis A et al (2008) A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the Y397 site of focal adhesion kinase decreases tumor growth. J Med Chem 51:7405–7416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golubovskaya VM, Conway-Dorsey K, Edmiston SN, Tse CK, Lark AA et al (2009) FAK overexpression and p53 mutations are highly correlated in human breast cancer. Int J Cancer 125:1735–1738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golubovskaya VM, Huang G, Ho B, Yemma M, Morrison CD et al (2013) Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide. Mol Cancer Ther 12:162–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heffler M, Golubovskaya VM, Dunn KM, Cance W (2013a) Focal adhesion kinase autophosphorylation inhibition decreases colon cancer cell growth and enhances the efficacy of chemotherapy. Cancer Biol Ther 14:761–772

    Article  PubMed Central  PubMed  Google Scholar 

  • Heffler M, Golubovskaya V, Conroy J, Liu S, Wang D et al (2013b) Fak and has inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes. Anticancer Agents Med Chem 13:584–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho B, Olson G, Figel S, Gelman I, Cance WG et al (2012) Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated. J Biol Chem 287:18656–18673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hochwald SN, Nyberg C, Zheng M, Wood C, Massoll NA et al (2009) A novel small molecule inhibitor of FAK decreases growth of human pancreatic cancer. Cell Cycle 8:2435–2443

    Article  CAS  PubMed  Google Scholar 

  • Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69:3382–3389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Illc D, Furuta Y, Kanazawa S, Takeda N, Sobue K et al (1995) Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–544

    Article  Google Scholar 

  • Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T et al (2013) Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst 105:1485–1495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krech T, Scheuerer E, Geffers R, Kreipe H, Lehmann U (2012) ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular breast cancer cells. Cancer Lett 315:153–160

    Article  CAS  PubMed  Google Scholar 

  • Lark AL, Livasy CA, Dressler L, Moore DT, Millikan RC et al (2005) High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype. Mod Pathol 18:1289–1294

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Fan H, Nagy T, Wei H, Wang C et al (2009) Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 69:466–474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo M, Zhao X, Chen S, Liu S (2013) Wicha MS, (2013) Distinct FAK activities determine progenitor and mammary stem cell characteristics. Cancer Res 69:466–474

    Article  Google Scholar 

  • Marcato P, Dean CA, Pan D, Araslanova R, Gillis M et al (2011) Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 29:32–45

    Article  CAS  PubMed  Google Scholar 

  • Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L et al (1995) Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res 55:2752–2755

    CAS  PubMed  Google Scholar 

  • Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22:396–403

    Article  CAS  PubMed  Google Scholar 

  • Xu L-H, Yang X-H, Bradham CA, Brenner DA, Baldwin AS et al (2000) The focal adhesion kinase suppresses transformation-associated, anchorage-Independent apoptosis in human breast cancer cells. J Biol Chem 275:30597–30604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Craig Jones and the Flow Cytometry Core Facility for cell cycle analysis (Roswell Park Cancer Institute). We would like to thank the Genomics and Bioinformatics Core Facilities (Roswell Park Cancer Institute) for microarray and bioinformatics analyses. We would like to thank Dr. Liu Biao for help with GEO numbers at NCBI. We would like to thank Animal Core Facility (Roswell Park Cancer Institute) for mice maintaining help. We would like to thank Dr. Carl Morrison, Dr. Lourdes Ylagan Logan and Pathology Core Facility for help with breast cancer TMA staining and scoring. We would like to thank Timothy Marlowe for his suggestions. The study was supported by NIH Grant CA65910 (WGC), NIH Grant # 5 T32 CA 108456-7 (Roswell Park Cancer Institute) and partly by the NCI Cancer Center Support Grant to the Roswell Park Cancer Institute (CA 16056).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vita Golubovskaya or William G. Cance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubovskaya, V., O’Brien, S., Ho, B. et al. Down-regulation of ALDH1A3, CD44 or MDR1 sensitizes resistant cancer cells to FAK autophosphorylation inhibitor Y15. J Cancer Res Clin Oncol 141, 1613–1631 (2015). https://doi.org/10.1007/s00432-015-1924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1924-3

Keywords

Navigation