Skip to main content
Log in

Exploring potential predictors of Henoch-Schönlein purpura nephritis: a pilot investigation on urinary metabolites

  • RESEARCH
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Henoch-Schönlein purpura nephritis (HSPN) is the most severe manifestation of Henoch-Schönlein purpura (HSP). This study aimed to determine the role of urine metabolomics in predicting HSPN and explore the potential mechanisms of HSP. A liquid chromatography-tandem mass spectrometry-based untargeted metabolomics analysis was performed to investigate the urinary metabolic profiles of 90 participants, comprising 30 healthy children (group CON) and 60 patients with HSP, including 30 HSP patients without renal involvement (group H) and 30 HSPN patients (group HSPN). The differentially expressed metabolites (DEMs) were identified using orthogonal partial least squares discriminant analysis (OPLS-DA), and subsequent bioinformatics analysis was conducted to elucidate the perturbed metabolic pathways. A total of 43 DEMs between H and HSPN groups were analyzed by the Kyoto Encyclopedia of Gene and Genome (KEGG) database, and the result indicates that glycine, serine and threonine metabolism, and cysteine and methionine metabolism were significantly disturbed. A composite model incorporating propionylcarnitine and indophenol sulfate was developed to assess the risk of renal involvement in pediatric patients with HSP.

   Conclusion: This study reveals the metabolic alterations in healthy children, HSPN patients, and HSP patients without renal involvement. Furthermore, propionylcarnitine and indophenol sulfate may be potential predictive biomarkers of the occurrence of HSPN.

What is Known:

• HSP is the predominant type of vasculitis observed in children. The long-term prognosis of HSP is contingent upon the extent of renal impairment. In severe nephritis, a delay in appropriate treatment may lead to fibrosis progression and subsequent development of chronic kidney disease (CKD), even leading to renal failure.

• The application of metabolomics in investigating diverse renal disorders has been documented. Urine is a robust and sensitive medium for metabolomics detection.

What is New:

• The metabolic profiles were identified in urine samples of healthy children and those with HSP at the early stage of the disease. Different metabolites were identified between HSP patients without nephritis and those who developed HSPN.

• These different metabolites may affect oxidative stress in the progression of HSPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All the data are available from the corresponding author upon reasonable request.

Abbreviations

AUC:

Area under the curve

CI:

Confidence interval

CKD:

Chronic kidney disease

DEMs:

Differentially expressed metabolites

ESI:

Electrospray ionization

HMDB:

Human metabolome database

HSP:

Henoch-Schönlein purpura

HSPN:

Henoch-Schönlein purpura nephritis

IgAV:

IgA vasculitis

IgAVN:

IgA vasculitis nephritis

IS:

Indoxyl sulfate

KEGG:

Kyoto Encyclopedia of Gene and Genome

LC–MS/MS:

Liquid chromatography-tandem mass spectrometry

OPLS-DA:

Orthogonal partial least squares discriminant analysis

PCA:

Principal component analysis

ROC:

Receiver operating characteristic

ROS:

Reactive oxygen species

References

  1. Tadokoro T, Abe T, Nakano T, Kimura Y, Higaki K, Hayashidani S, Tashiro H (2023) IgA vasculitis. QJM 116:538–539. https://doi.org/10.1093/qjmed/hcad038

    Article  CAS  PubMed  Google Scholar 

  2. Chen JY, Mao JH (2015) Henoch-Schonlein purpura nephritis in children: incidence, pathogenesis and management. World J Pediatr 11:29–34. https://doi.org/10.1007/s12519-014-0534-5

    Article  CAS  PubMed  Google Scholar 

  3. Nusken E, Weber LT (2022) IgA vasculitis nephritis. Curr Opin Pediatr 34:209–216. https://doi.org/10.1097/mop.0000000000001120

    Article  PubMed  Google Scholar 

  4. Rigante D, Candelli M, Federico G, Bartolozzi F, Porri MG, Stabile A (2005) Predictive factors of renal involvement or relapsing disease in children with Henoch-Schonlein purpura. Rheumatol Int 25:45–48. https://doi.org/10.1007/s00296-004-0452-2

    Article  PubMed  Google Scholar 

  5. Demir S, Kaplan O, Celebier M, Sag E, Bilginer Y, Lay I, Ozen S (2020) Predictive biomarkers of IgA vasculitis with nephritis by metabolomic analysis. Semin Arthritis Rheum 50:1238–1244. https://doi.org/10.1016/j.semarthrit.2020.09.006

    Article  CAS  PubMed  Google Scholar 

  6. Xu L, Li Y, Wu X (2022) IgA vasculitis update: epidemiology, pathogenesis, and biomarkers. Front Immunol 13:921864. https://doi.org/10.3389/fimmu.2022.921864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song Y, Huang X, Yu G, Qiao J, Cheng J, Wu J, Chen J (2021) Pathogenesis of IgA vasculitis: an up-to-date review. Front Immunol 12:771619. https://doi.org/10.3389/fimmu.2021.771619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rohner K, Marlais M, Ahn YH, Ali A, Alsharief A, Novak AB, Brambilla M et al (2024) Outcome of immunosuppression in children with IgA vasculitis–related nephritis. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfae009

    Article  PubMed  Google Scholar 

  9. Riccio S, Valentino MS, Passaro AP, Izzo M, Guarino S, Miraglia Del Giudice E, Marzuillo P, Di Sessa A (2022) New insights from metabolomics in pediatric renal diseases. Children (Basel). https://doi.org/10.3390/children9010118

    Article  PubMed  Google Scholar 

  10. Zhang Q, Lai LY, Cai YY, Wang MJ, Ma G, Qi LW, Xue J, Huang FQ (2021) Serum-urine matched metabolomics for predicting progression of Henoch-Schonlein Purpura nephritis. Front Med (Lausanne) 8:657073. https://doi.org/10.3389/fmed.2021.657073

    Article  PubMed  Google Scholar 

  11. Wen M, Dang X, Feng S, He Q, Li X, Liu T, He X (2021) Integrated analyses of gut microbiome and host metabolome in children with Henoch-Schonlein purpura. Front Cell Infect Microbiol 11:796410. https://doi.org/10.3389/fcimb.2021.796410

    Article  CAS  PubMed  Google Scholar 

  12. Gao Y (2021) On research and translation of urinary biomarkers. Adv Exp Med Biol 1306:101–108. https://doi.org/10.1007/978-3-030-63908-2_7

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Liu J, Cao D (2023) Urine metabolomics for assessing fertility-sparing treatment efficacy in endometrial cancer: a non-invasive approach using ultra-performance liquid chromatography mass spectrometry. BMC Womens Health 23:583. https://doi.org/10.1186/s12905-023-02730-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ozen S, Pistorio A, Iusan SM, Bakkaloglu A, Herlin T, Brik R, Buoncompagni A et al (2010) EULAR/PRINTO/PRES criteria for Henoch-Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann Rheum Dis 69:798–806. https://doi.org/10.1136/ard.2009.116657

    Article  PubMed  Google Scholar 

  15. Mills JA, Michel BA, Bloch DA, Calabrese LH, Hunder GG, Arend WP, Edworthy SM, Fauci AS, Leavitt RY, Lie JT (1990) The American College of Rheumatology 1990 criteria for the classification of Henoch-Schönlein purpura. Arthritis Rheum 33:1114–1121. https://doi.org/10.1002/art.1780330809

    Article  CAS  PubMed  Google Scholar 

  16. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng Q, Li Y, Yang Y, Feng J (2020) Urine metabolomics analysis in patients with normoalbuminuric diabetic kidney disease. Front Physiol 11:578799. https://doi.org/10.3389/fphys.2020.578799

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chasapi SA, Karagkouni E, Kalavrizioti D, Vamvakas S, Zompra A, Takis PG, Goumenos DS, Spyroulias GA (2022) NMR-based metabolomics in differential diagnosis of chronic kidney disease (CKD) subtypes. Metabolites. https://doi.org/10.3390/metabo12060490

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chiang FF, Chao TH, Huang SC, Cheng CH, Tseng YY, Huang YC (2022) Cysteine regulates oxidative stress and glutathione-related antioxidative capacity before and after colorectal tumor resection. Int J Mol Sci. https://doi.org/10.3390/ijms23179581

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu S, Han S, Dai Y, Wang L, Zhang X, Ding Y (2022) A review of the mechanism of vascular endothelial injury in immunoglobulin A vasculitis. Front Physiol 13:833954. https://doi.org/10.3389/fphys.2022.833954

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mascolo E, Verni F (2020) Vitamin B6 and diabetes: relationship and molecular mechanisms. Int J Mol Sci. https://doi.org/10.3390/ijms21103669

    Article  PubMed  PubMed Central  Google Scholar 

  23. Butbul Aviel Y, Dafna L, Pilar G, Brik R (2017) Endothelial function in children with a history of henoch schonlein purpura. Pediatr Rheumatol Online J 15:3. https://doi.org/10.1186/s12969-016-0135-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Daiber A, Chlopicki S (2020) Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: evidence for redox-based therapies. Free Radic Biol Med 157:15–37. https://doi.org/10.1016/j.freeradbiomed.2020.02.026

    Article  CAS  PubMed  Google Scholar 

  25. Xie L, Liu Z, Lu H, Zhang W, Mi Q, Li X, Tang Y, Chen Q, Ferro A, Ji Y (2012) Pyridoxine inhibits endothelial NOS uncoupling induced by oxidized low-density lipoprotein via the PKCalpha signalling pathway in human umbilical vein endothelial cells. Br J Pharmacol 165:754–764. https://doi.org/10.1111/j.1476-5381.2011.01607.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ji Y, Diao J, Han Y, Huang Y, Bai H, Chen Q, Fan L, Ferro A (2006) Pyridoxine prevents dysfunction of endothelial cell nitric oxide production in response to low-density lipoprotein. Atherosclerosis 188:84–94. https://doi.org/10.1016/j.atherosclerosis.2005.10.035

    Article  CAS  PubMed  Google Scholar 

  27. Dalto DB, Matte JJ (2017) Pyridoxine (Vitamin B(6)) and the glutathione peroxidase system; a link between one-carbon metabolism and antioxidation. Nutrients. https://doi.org/10.3390/nu9030189

    Article  PubMed  PubMed Central  Google Scholar 

  28. Finkelstein JD, Martin JJ, Harris BJ (1986) Effect of dietary cystine on methionine metabolism in rat liver. J Nutr 116:985–990. https://doi.org/10.1093/jn/116.6.985

    Article  CAS  PubMed  Google Scholar 

  29. Correia MJ, Pimpao AB, Fernandes DGF, Morello J, Sequeira CO, Calado J, Antunes AMM, Almeida MS, Branco P, Monteiro EC, Vicente JB, Serpa J, Pereira SA (2022) Cysteine as a multifaceted player in kidney, the cysteine-related thiolome and its implications for precision medicine. Molecules. https://doi.org/10.3390/molecules27041416

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pastore A, Noce A, Di Giovamberardino G, De Stefano A, Calla C, Zenobi R, Dessi M, Di Daniele N (2015) Homocysteine, cysteine, folate and vitamin B(1)(2) status in type 2 diabetic patients with chronic kidney disease. J Nephrol 28:571–576. https://doi.org/10.1007/s40620-014-0126-4

    Article  CAS  PubMed  Google Scholar 

  31. Sarnak MJ, Wang SR, Beck GJ, Kusek JW, Selhub J, Greene T, Levey AS (2002) Homocysteine, cysteine, and B vitamins as predictors of kidney disease progression. Am J Kidney Dis 40:932–939. https://doi.org/10.1053/ajkd.2002.36323

    Article  CAS  PubMed  Google Scholar 

  32. Yu R, Wu Y, He P, Bai Y, Zhang Y, Bian X, Sun G, Zhang B (2023) LIM and cysteine-rich domains 1 promotes transforming growth factor beta1-induced epithelial-mesenchymal transition in human kidney 2 cells. Lab Invest 103:100016. https://doi.org/10.1016/j.labinv.2022.100016

    Article  PubMed  Google Scholar 

  33. Suljevic D, Mitrasinovic-Brulic M, Focak M (2023) L-cysteine protective effects against platelet disaggregation and echinocyte occurrence in gentamicin-induced kidney injury. Mol Cell Biochem 478:13–22. https://doi.org/10.1007/s11010-022-04498-x

    Article  CAS  PubMed  Google Scholar 

  34. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A, European Uremic Toxin Work Group (2012) Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 23:1258–1270. https://doi.org/10.1681/asn.2011121175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao H, Liu S (2017) Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease. Life Sci 185:23–29. https://doi.org/10.1016/j.lfs.2017.07.027

    Article  CAS  PubMed  Google Scholar 

  36. Cheng TH, Ma MC, Liao MT, Zheng CM, Lu KC, Liao CH, Hou YC, Liu WC, Lu CL (2020) Indoxyl sulfate, a tubular toxin, contributes to the development of chronic kidney disease. Toxins (Basel). https://doi.org/10.3390/toxins12110684

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saigo C, Nomura Y, Yamamoto Y, Sagata M, Matsunaga R, Jono H, Nishi K, Saito H (2014) Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters. Drug Des Devel Ther 8:1073–1082. https://doi.org/10.2147/dddt.s67456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu M, Kim YJ, Kang DH (2011) Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin J Am Soc Nephrol 6:30–39. https://doi.org/10.2215/cjn.05340610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dias GF, Bonan NB, Steiner TM, Tozoni SS, Rodrigues S, Nakao LS, Kuntsevich V, Pecoits Filho R, Kotanko P, Moreno-Amaral AN (2018) Indoxyl sulfate, a uremic toxin, stimulates reactive oxygen species production and erythrocyte cell death supposedly by an organic anion transporter 2 (OAT2) and NADPH oxidase activity-dependent pathways. Toxins (Basel). https://doi.org/10.3390/toxins10070280

    Article  PubMed  Google Scholar 

  40. Makarova E, Makrecka-Kuka M, Vilks K, Volska K, Sevostjanovs E, Grinberga S, Zarkova-Malkova O, Dambrova M, Liepinsh E (2019) Decreases in circulating concentrations of long-chain acylcarnitines and free fatty acids during the glucose tolerance test represent tissue-specific insulin sensitivity. Front Endocrinol (Lausanne) 10:870. https://doi.org/10.3389/fendo.2019.00870

    Article  PubMed  Google Scholar 

  41. Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB (2022) Acylcarnitines: nomenclature, biomarkers, therapeutic potential, drug targets, and clinical trials. Pharmacol Rev 74:506–551. https://doi.org/10.1124/pharmrev.121.000408

    Article  CAS  PubMed  Google Scholar 

  42. Libert DM, Nowacki AS, Natowicz MR (2018) Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 6:e5410. https://doi.org/10.7717/peerj.5410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Manoli I, Gebremariam A, McCoy S, Pass AR, Gagne J, Hall C, Ferry S, Van Ryzin C, Sloan JL, Sacchetti E, Catesini G, Rizzo C, Martinelli D, Spada M, Dionisi-Vici C, Venditti CP (2023) Biomarkers to predict disease progression and therapeutic response in isolated methylmalonic acidemia. J Inherit Metab Dis 46:554–572. https://doi.org/10.1002/jimd.12636

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their appreciation to the children and their families and the personnel at the health physical examination center of the Children’s Hospital of Soochow University for their assistance and support in participant recruitment.

Funding

The study was supported by the Medical Research Project of the Jiangsu Commission of Health (K2023049).

Author information

Authors and Affiliations

Authors

Contributions

MY, XS, and JT were responsible for study conceptualization. JG collected the urine samples and the clinical data. MY and XS generated data, analyzed results, and drafted the manuscript. QF and JT reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianmei Tian.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the ethics committee of the Children’s Hospital of Soochow University (2023CS180) and conducted under the Declaration of Helsinki. Informed consent was obtained from all patients’ parents.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Peter de Winter

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2843 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Song, X., Guo, J. et al. Exploring potential predictors of Henoch-Schönlein purpura nephritis: a pilot investigation on urinary metabolites. Eur J Pediatr (2024). https://doi.org/10.1007/s00431-024-05573-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00431-024-05573-9

Keywords

Navigation