Skip to main content

Advertisement

Log in

Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Haemodynamic assessment during the transitional period in preterm infants is challenging. We aimed to describe the relationships between cerebral regional tissue oxygen saturation (CrSO2), perfusion index (PI), echocardiographic, and clinical parameters in extremely preterm infants in their first 72 h of life. Twenty newborns born at < 28 weeks of gestation were continuously monitored with CrSO2 and preductal PI. Cardiac output was measured at H6, H24, H48, and H72. The median gestational age and birth weight were 25.0 weeks (24–26) and 750 g (655–920), respectively. CrSO2 and preductal PI had r values < 0.35 with blood gases, lactates, haemoglobin, and mean blood pressure. Cardiac output significantly increased over the 72 h of the study period. Fifteen patients had at least one episode of low left and/or right ventricular output (RVO), during which there was a strong correlation between CrSO2 and superior vena cava (SVC) flow (at H6 (r = 0.74) and H24 (r = 0.86)) and between PI and RVO (at H6 (r = 0.68) and H24 (r = 0.92)). Five patients had low SVC flow (≤ 40 mL/kg/min) at H6, during which PI was strongly correlated with RVO (r = 0.98).

Conclusion: CrSO2 and preductal PI are strongly correlated with cardiac output during low cardiac output states.

What is Known:

Perfusion index and near-infrared spectroscopy are non-invasive tools to evaluate haemodynamics in preterm infants.

Pre- and postductal perfusion indexes strongly correlate with left ventricular output in term infants, and near-infrared spectroscopy has been validated to assess cerebral oxygenation in term and preterm infants.

What is New:

Cerebral regional tissue oxygen saturation and preductal perfusion index were strongly correlated with cardiac output during low cardiac output states.

The strength of the correlation between cerebral regional tissue oxygen saturation, preductal perfusion index, and cardiac output varied in the first 72 h of life, reflecting the complexity of the transitional physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CrSO2 :

Cerebral regional tissue oxygen saturation

Hb:

Haemoglobin concentration in the blood

LVO:

Left ventricular output

MBP:

Mean blood pressure

NIRS:

Near-infrared spectroscopy

PaCO2 :

Partial arterial carbon dioxide

PDA:

Patent ductus arteriosus

PI:

Perfusion index

RVO:

Right ventricular output

SaO2 :

Arterial oxygen saturation

SVC:

Superior vena cava

TnECHO:

Targeted neonatal echocardiography

References

  1. Alderliesten T, Dix L, Baerts W, Caicedo A, van Huffel S, Naulaers G, Groenendaal F, van Bel F, Lemmers P (2016) Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr Res 79(1-1):55–64. https://doi.org/10.1038/pr.2015.186

    Article  CAS  PubMed  Google Scholar 

  2. Arora R, Ridha M, Lee DS et al (2013) Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus. Pediatr Res 73(6):713–718. https://doi.org/10.1038/pr.2013.53

    Article  CAS  PubMed  Google Scholar 

  3. Bale G, Mitra S, Meek J, Robertson N, Tachtsidis I (2014) A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury. Biomed Opt Express 5(10):3450–3466. https://doi.org/10.1364/BOE.5.003450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Batton B, Li L, Newman NS, Das A, Watterberg KL, Yoder BA, Faix RG, Laughon MM, Stoll BJ, Higgins RD, Walsh MC, Eunice Kennedy Shriver National Institute of Child Health & Human Development Neonatal Research Network (2016) Early blood pressure, antihypotensive therapy and outcomes at 18-22 months' corrected age in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed 101(3):F201–F206. https://doi.org/10.1136/archdischild-2015-308899

    Article  PubMed  Google Scholar 

  5. Buckley EM, Cook NM, Durduran T, Kim MN, Zhou C, Choe R, Yu G, Schultz S, Sehgal CM, Licht DJ, Arger PH, Putt ME, Hurt HH, Yodh AG (2009) Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Opt Express 17(15):12571–12581. https://doi.org/10.1364/OE.17.012571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buckley EM, Lynch JM, Goff DA et al. (2013) Early postoperative changes in cerebral oxygen metabolism following neonatal cardiac surgery: effects of surgical duration. The journal of thoracic and cardiovascular surgery 145:196-203, 205 e191; discussion 203-195

  7. Caicedo A, De Smet D, Vanderhaegen J et al (2011) Impaired cerebral autoregulation using near-infrared spectroscopy and its relation to clinical outcomes in premature infants. Adv Exp Med Biol 701:233–239. https://doi.org/10.1007/978-1-4419-7756-4_31

    Article  CAS  PubMed  Google Scholar 

  8. Corsini I, Cecchi A, Coviello C et al (2017) Perfusion index and left ventricular output correlation in healthy term infants. Eur J Pediatr

  9. De Felice C, Goldstein MR, Parrini S et al (2006) Early dynamic changes in pulse oximetry signals in preterm newborns with histologic chorioamnionitis. Pediatr Crit Care Med 7(2):138–142. https://doi.org/10.1097/01.PCC.0000201002.50708.62

    Article  PubMed  Google Scholar 

  10. Dehaes M, Aggarwal A, Lin PY, Rosa Fortuno C, Fenoglio A, Roche-Labarbe N, Soul JS, Franceschini MA, Grant PE (2014) Cerebral oxygen metabolism in neonatal hypoxic ischemic encephalopathy during and after therapeutic hypothermia. J Cereb Blood Flow Metab 34(1):87–94. https://doi.org/10.1038/jcbfm.2013.165

    Article  CAS  PubMed  Google Scholar 

  11. Dehaes M, Cheng HH, Buckley EM, Lin PY, Ferradal S, Williams K, Vyas R, Hagan K, Wigmore D, McDavitt E, Soul JS, Franceschini MA, Newburger JW, Ellen Grant P (2015) Perioperative cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle physiology. Biomed Opt Express 6(12):4749–4767. https://doi.org/10.1364/BOE.6.004749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dempsey EM, Al Hazzani F, Barrington KJ (2009) Permissive hypotension in the extremely low birthweight infant with signs of good perfusion. Arch Dis Child Fetal Neonatal Ed 94:F241–F244

    Article  CAS  PubMed  Google Scholar 

  13. Dix LM, Van Bel F, Baerts W et al (2013) Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate. Pediatr Res 74(5):557–563. https://doi.org/10.1038/pr.2013.133

    Article  CAS  PubMed  Google Scholar 

  14. Durduran T, Yodh AG (2014) Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement. NeuroImage 85(Pt 1):51–63. https://doi.org/10.1016/j.neuroimage.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  15. Durduran T, Zhou C, Buckley EM, Kim MN, Yu G, Choe R, Gaynor JW, Spray TL, Durning SM, Mason SE, Montenegro LM, Nicolson SC, Zimmerman RA, Putt ME, Wang J, Greenberg JH, Detre JA, Yodh AG, Licht DJ (2010) Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects. J Biomed Opt 15(3):037004. https://doi.org/10.1117/1.3425884

    Article  PubMed  PubMed Central  Google Scholar 

  16. El-Khuffash AF, Mcnamara PJ (2011) Neonatologist-performed functional echocardiography in the neonatal intensive care unit. Semin Fetal Neonatal Med 16(1):50–60. https://doi.org/10.1016/j.siny.2010.05.001

    Article  PubMed  Google Scholar 

  17. Evans N, Kluckow M (1996) Early determinants of right and left ventricular output in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed 74(2):F88–F94. https://doi.org/10.1136/fn.74.2.F88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evans N, Kluckow M, Simmons M et al (2002) Which to measure, systemic or organ blood flow? Middle cerebral artery and superior vena cava flow in very preterm infants. Arch Dis Child Fetal Neonatal Ed 87(3):F181–F184. https://doi.org/10.1136/fn.87.3.F181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferradal SL, Yuki K, Vyas R, Ha CG, Yi F, Stopp C, Wypij D, Cheng HH, Newburger JW, Kaza AK, Franceschini MA, Kussman BD, Grant PE (2017) Non-invasive assessment of cerebral blood flow and oxygen metabolism in neonates during hypothermic cardiopulmonary bypass: feasibility and clinical implications. Sci Rep 7:44117. https://doi.org/10.1038/srep44117

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gill AB, Weindling AM (1993) Echocardiographic assessment of cardiac function in shocked very low birthweight infants. Arch Dis Child 68:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Granelli A, Ostman-Smith I (2007) Noninvasive peripheral perfusion index as a possible tool for screening for critical left heart obstruction. Acta Paediatr 96(10):1455–1459. https://doi.org/10.1111/j.1651-2227.2007.00439.x

    Article  PubMed  Google Scholar 

  22. Singh Y, Gupta S, Groves AM et al (2016) Expert consensus statement 'Neonatologist-performed echocardiography (NoPE)'-training and accreditation in UK. Eur J Pediatr 175:281–287

    Article  PubMed  Google Scholar 

  23. Hakan N, Dilli D, Zenciroglu A, Aydin M, Okumus N (2014) Reference values of perfusion indices in hemodynamically stable newborns during the early neonatal period. Eur J Pediatr 173(5):597–602. https://doi.org/10.1007/s00431-013-2224-z

    Article  PubMed  Google Scholar 

  24. Hawkes GA, O'toole JM, Kenosi M et al (2015) Perfusion index in the preterm infant immediately after birth. Early Hum Dev 91(8):463–465. https://doi.org/10.1016/j.earlhumdev.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  25. Heuchan AM, Evans N, Henderson Smart DJ et al (2002) Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995-97. Arch Dis Child Fetal Neonatal Ed 86(2):F86–F90. https://doi.org/10.1136/fn.86.2.F86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirose A, Khoo NS, Aziz K, al-Rajaa N, van den Boom J, Savard W, Brooks P, Hornberger LK (2015) Evolution of left ventricular function in the preterm infant. J Am Soc Echocardiogr 28(3):302–308. https://doi.org/10.1016/j.echo.2014.10.017

    Article  PubMed  Google Scholar 

  27. Khositseth A, Muangyod N, Nuntnarumit P (2013) Perfusion index as a diagnostic tool for patent ductus arteriosus in preterm infants. Neonatology 104(4):250–254. https://doi.org/10.1159/000353862

    Article  PubMed  Google Scholar 

  28. Kinoshita M, Hawkes CP, Ryan CA, Dempsey EM (2013) Perfusion index in the very preterm infant. Acta Paediatr 102(9):e398–e401. https://doi.org/10.1111/apa.12322

    Article  PubMed  Google Scholar 

  29. Kluckow M (2005) Low systemic blood flow and pathophysiology of the preterm transitional circulation. Early Hum Dev 81(5):429–437. https://doi.org/10.1016/j.earlhumdev.2005.03.006

    Article  PubMed  Google Scholar 

  30. Kluckow M, Evans N (1996) Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr 129(4):506–512. https://doi.org/10.1016/S0022-3476(96)70114-2

    Article  CAS  PubMed  Google Scholar 

  31. Kluckow M, Evans N (2000) Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed 82(3):F188–F194. https://doi.org/10.1136/fn.82.3.F188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kluckow M, Evans N (2000) Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed 82(3):F182–F187. https://doi.org/10.1136/fn.82.3.F182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lakkundi A, Wright I, De Waal K (2014) Transitional hemodynamics in preterm infants with a respiratory management strategy directed at avoidance of mechanical ventilation. Early Hum Dev 90(8):409–412. https://doi.org/10.1016/j.earlhumdev.2014.04.017

    Article  PubMed  Google Scholar 

  34. Lin PY, Hagan K, Fenoglio A, Grant PE, Franceschini MA (2016) Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage. Sci Rep 6(1):25903. https://doi.org/10.1038/srep25903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lynch JM, Buckley EM, Schwab PJ, McCarthy AL, Winters ME, Busch DR, Xiao R, Goff DA, Nicolson SC, Montenegro LM, Fuller S, Gaynor JW, Spray TL, Yodh AG, Naim MY, Licht DJ (2014) Time to surgery and preoperative cerebral hemodynamics predict postoperative white matter injury in neonates with hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 148(5):2181–2188. https://doi.org/10.1016/j.jtcvs.2014.05.081

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mertens L, Seri I, Marek J, Arlettaz R, Barker P, McNamara P, Moon-Grady AJ, Coon PD, Noori S, Simpson J, Lai WW, Writing Group of the American Society of Echocardiography (ASE), European Association of Echocardiography (EAE), Association for European Pediatric Cardiologists (AEPC) (2011) Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Eur J Echocardiogr 12(10):715–736. https://doi.org/10.1093/ejechocard/jer181

    Article  PubMed  Google Scholar 

  37. Munro MJ, Walker AM, Barfield CP (2004) Hypotensive extremely low birth weight infants have reduced cerebral blood flow. Pediatrics 114(6):1591–1596. https://doi.org/10.1542/peds.2004-1073

    Article  PubMed  Google Scholar 

  38. Noori S, Seri I (2014) Does targeted neonatal echocardiography affect hemodynamics and cerebral oxygenation in extremely preterm infants? J Perinatol 34(11):847–849. https://doi.org/10.1038/jp.2014.127

    Article  CAS  PubMed  Google Scholar 

  39. Noori S, Mccoy M, Anderson MP et al (2014) Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr 164(264–270):e261–e263

    Google Scholar 

  40. Osborn DA, Evans N, Kluckow M (2004) Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch Dis Child Fetal Neonatal Ed 89(2):F168–F173. https://doi.org/10.1136/adc.2002.023796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Papile LA, Munsick-Bruno G, Schaefer A (1983) Relationship of cerebral intraventricular hemorrhage and early childhood neurologic handicaps. J Pediatr 103(2):273–277. https://doi.org/10.1016/S0022-3476(83)80366-7

    Article  CAS  PubMed  Google Scholar 

  42. Paradisis M, Evans N, Kluckow M, Osborn D, McLachlan AJ (2006) Pilot study of milrinone for low systemic blood flow in very preterm infants. J Pediatr 148(3):306–313. https://doi.org/10.1016/j.jpeds.2005.11.030

    Article  CAS  PubMed  Google Scholar 

  43. Pellicer A, Bravo Mdel C (2011) Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med 16(1):42–49. https://doi.org/10.1016/j.siny.2010.05.003

    Article  PubMed  Google Scholar 

  44. Piasek CZ, Van Bel F, Sola A (2014) Perfusion index in newborn infants: a noninvasive tool for neonatal monitoring. Acta Paediatr 103(5):468–473. https://doi.org/10.1111/apa.12574

    Article  PubMed  Google Scholar 

  45. Roche-Labarbe N, Carp SA, Surova A, Patel M, Boas d, Grant PE, Franceschini MA (2010) Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates' brains in the first six weeks of life. Hum Brain Mapp 31(3):341–352. https://doi.org/10.1002/hbm.20868

    Article  PubMed  PubMed Central  Google Scholar 

  46. Roche-Labarbe N, Fenoglio A, Aggarwal A, Dehaes M, Carp SA, Franceschini MA, Grant PE (2012) Near-infrared spectroscopy assessment of cerebral oxygen metabolism in the developing premature brain. J Cereb Blood Flow Metab 32(3):481–488. https://doi.org/10.1038/jcbfm.2011.145

    Article  CAS  PubMed  Google Scholar 

  47. Sirc J, Dempsey EM, Miletin J (2013) Cerebral tissue oxygenation index, cardiac output and superior vena cava flow in infants with birth weight less than 1250 grams in the first 48 hours of life. Early Hum Dev 89(7):449–452. https://doi.org/10.1016/j.earlhumdev.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  48. Soul JS, Hammer PE, Tsuji M, Saul JP, Bassan H, Limperopoulos C, Disalvo DN, Moore M, Akins P, Ringer S, Volpe JJ, Trachtenberg F, du Plessis AJ (2007) Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 61(4):467–473. https://doi.org/10.1203/pdr.0b013e31803237f6

    Article  PubMed  Google Scholar 

  49. Takahashi S, Kakiuchi S, Nanba Y, Tsukamoto K, Nakamura T, Ito Y (2010) The perfusion index derived from a pulse oximeter for predicting low superior vena cava flow in very low birth weight infants. J Perinatol 30(4):265–269. https://doi.org/10.1038/jp.2009.159

    Article  CAS  PubMed  Google Scholar 

  50. Takami T, Sunohara D, Kondo A, Mizukaki N, Suganami Y, Takei Y, Miyajima T, Hoshika A (2010) Changes in cerebral perfusion in extremely LBW infants during the first 72 h after birth. Pediatr Res 68(5):435–439. https://doi.org/10.1203/PDR.0b013e3181f2bd4d

    PubMed  Google Scholar 

  51. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC (2000) Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology 93(4):947–953. https://doi.org/10.1097/00000542-200010000-00012

    Article  CAS  PubMed  Google Scholar 

  52. Wijbenga RG, Lemmers PM, Van Bel F (2011) Cerebral oxygenation during the first days of life in preterm and term neonates: differences between different brain regions. Pediatr Res 70(4):389–394. https://doi.org/10.1203/PDR.0b013e31822a36db

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2015-04672 and the Fonds de Recherche du Québec–Santé (FRQS) grant 32600 [MD].

Funding

This study was supported by the Mallinckrodt Research Fund and partly supported by the Seventh European Framework Program (FP7-HEALTH-2010-4.2-1, grant agreement 260777, HIP Project).

Author information

Authors and Affiliations

Authors

Contributions

MJ participated in the study conception and design, collected and interpreted data and wrote the first draft of the manuscript. TPB performed the statistical analysis. OK made substantial contribution to the study conception and design, to the data interpretation and revised the manuscript critically. MJR and KB provided serious critical intput during the study conception and critically reviewed the manuscript. MD supervised TPB during the statistical analysis, contributed significantly to the data interpretation, supervised the first draft of the manuscript and acted as the co-principal investigator for the study with AL. AL was the principal investigator, participed in the study conception, finalised data collection forms, supervised the data collection and the draft writing. All authors approved the final manuscript.

Corresponding author

Correspondence to Anie Lapointe.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The ethics board and scientific board committee of the Sainte-Justine University Health Center approved the study. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Patrick Van Reempts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janaillac, M., Beausoleil, T.P., Barrington, K.J. et al. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life. Eur J Pediatr 177, 541–550 (2018). https://doi.org/10.1007/s00431-018-3096-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-018-3096-z

Keywords

Navigation