Skip to main content

Advertisement

Log in

Changes in whole-body fat distribution, intrahepatic lipids, and insulin resistance of obese adolescents during a low-level lifestyle intervention

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze changes in adipose tissue (AT) distribution, intrahepatic lipids (IHL), and insulin resistance (IR) among a group of obese adolescents undergoing a 7-months low-level lifestyle intervention. Thirty-nine obese Caucasian adolescents (mean age 13.9 years, body mass index standard deviation score (BMI-SDSLMS) 2.14) were included. AT and IHL were determined by T1-weighted magnetic resonance (MR) imaging and single-voxel MR spectroscopy; IR was estimated using the homeostatic model assessment (HOMA-IR). The lifestyle intervention led to a reduction of both BMI-SDSLMS (boys 2.27 to 2.17; girls 2.00 to 1.82) and HOMA-IR (boys 6.1 to 4.4 (p = 0.008); girls 6.2 to 4.7 (p = 0.030)). IHL dropped in both genders (boys 7.5 to 4.3 %; girls 4.6 to 3.4 %) positively correlating with HOMA-IR (boys r = 0.52; girls r = 0.68), while in contrast visceral AT did not change significantly.

Conclusions: Although the lifestyle intervention only slightly reduced BMI-SDSLMS, insulin sensitivity improved in both genders and came along with a marked reduction of IHL. This suggests that IHL might play the dominant role regarding insulin resistance in the youth, especially if compared to other AT compartments such as visceral AT.

What is Known:

MR imaging/spectroscopy can be used to evaluate body fat distribution and intrahepatic lipids in the youth.

The strength of associations between body fat compartments and insulin resistance is under scientific debate.

What is New:

The study emphasizes that even a low-level lifestyle intervention has a beneficial effect.

The study suggests that intrahepatic lipids are an important factor in the development of insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AT:

Adipose tissue

ATLE :

Adipose tissue of lower extremities

ATUE :

Adipose tissue of upper extremities

BMI:

Body mass index

BMI-SDSLMS :

Body mass index standard deviation score

CT:

Computed tomography

DEXA:

Dual-energy X-ray absorptiometry

DISKUS:

Abbreviation formed from the initial components of the German phrase “Dick Sein im Kindes- und Jugendalter Studie”, which translates as “being obese during childhood and adolescence study” in English

HOMA-IR:

Homeostatic model assessment of insulin resistance

IHL:

Intrahepatic lipids

IR:

Insulin resistance

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MRS:

Single-voxel magnetic resonance 1H-spectroscopy

NATLE :

Non-adipose tissue of lower extremities

NATUE :

Non-adipose tissue of upper extremities

SCAT:

Subcutaneous adipose tissue

SCATTR :

Subcutaneous adipose tissue of the body trunk

STEAM:

STimulated Echo Acquisition Mode in magnetic resonance spectroscopy

TAT:

Total adipose tissue

TBV:

Total body volume

TE:

Echo time

TNAT:

Total non-adipose tissue

TM:

Mixing time

TR:

Repetition time

VAT:

Visceral adipose tissue

WHR:

Waist-to-hip ratio

References

  1. Bell LM, Watts K, Siafarikas A, Thompson A, Ratnam N, Bulsara M, Finn J, O'Driscoll G, Green DJ, Jones TW, Davis EA (2007) Exercise alone reduces insulin resistance in obese children independently of changes in body composition. J Clin Endocrinol Metab 92:4230–4235. doi:10.1210/jc.2007-0779

    Article  CAS  PubMed  Google Scholar 

  2. Benfield LL, Fox KR, Peters DM, Blake H, Rogers I, Grant C, Ness A (2008) Magnetic resonance imaging of abdominal adiposity in a large cohort of British children. Int J Obes (Lond) 32:91–99. doi:10.1038/sj.ijo.0803780

    Article  CAS  Google Scholar 

  3. Brodie DA, Stewart AD (1999) Body composition measurement: a hierarchy of methods. J Pediatr Endocrinol Metab 12:801–816. doi:10.1515/JPEM.1999.12.6.801

    Article  CAS  PubMed  Google Scholar 

  4. Caranti DA, de Mello MT, Prado WL, Tock L, Siqueira KO, de Piano A, Lofrano MC, Cristofalo DM, Lederman H, Tufik S, Damaso AR (2007) Short- and long-term beneficial effects of a multidisciplinary therapy for the control of metabolic syndrome in obese adolescents. Metabolism 56:1293–1300. doi:10.1016/j.metabol.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  5. Cole TJ, Freeman JV, Preece MA (1995) Body mass index reference curves for the UK, 1990. Arch Dis Child 73:25–29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Fishbein MH, Miner M, Mogren C, Chalekson J (2003) The spectrum of fatty liver in obese children and the relationship of serum aminotransferases to severity of steatosis. J Pediatr Gastroenterol Nutr 36:54–61. doi:10.1097/00005176-200301000-00012

    Article  CAS  PubMed  Google Scholar 

  7. Fredriks AM, van Buuren S, Fekkes M, Verloove-Vanhorick SP, Wit JM (2005) Are age references for waist circumference, hip circumference and waist-hip ratio in Dutch children useful in clinical practice? Eur J Pediatr 164:216–222. doi:10.1007/s00431-004-1586-7

    Article  PubMed  Google Scholar 

  8. Gutin B, Owens S (1999) Role of exercise intervention in improving body fat distribution and risk profile in children. Am J Hum Biol 11:237–247. doi:10.1002/(SICI)1520-6300(1999)11:2<237::AID-AJHB11>3.0.CO;2-9

    Article  PubMed  Google Scholar 

  9. Hasson RE, Adam TC, Davis JN, Kelly LA, Ventura EE, Byrd-Williams CE, Toledo-Corral CM, Roberts CK, Lane CJ, Azen SP, Chou CP, Spruijt-Metz D, Weigensberg MJ, Berhane K, Goran MI (2012) Randomized controlled trial to improve adiposity, inflammation, and insulin resistance in obese African-American and Latino youth. Obesity (Silver Spring) 20:811–818. doi:10.1038/oby.2010.343

    Article  CAS  Google Scholar 

  10. Kersting M, Alexy U, Clausen K (2005) Using the concept of food based dietary guidelines to develop an optimized mixed diet (OMD) for German children and adolescents. J Pediatr Gastroenterol Nutr 40:301–308. doi:10.1097/01.MPG.0000153887.19429.70

    Article  PubMed  Google Scholar 

  11. Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiß HC (2001) Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149:807–818. doi:10.1007/s001120170107

    Article  Google Scholar 

  12. Lobstein T, Frelut ML (2003) Prevalence of overweight among children in Europe. Obes Rev 4:195–200. doi:10.1046/j.1467-789X.2003.00116.x

    Article  CAS  PubMed  Google Scholar 

  13. Machann J, Thamer C, Schnoedt B, Stefan N, Stumvoll M, Haring HU, Claussen CD, Fritsche A, Schick F (2005) Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: a whole body MRI/MRS study. Magn Reson Mater Phy 18:128–137. doi:10.1007/s10334-005-0104-x

    Article  CAS  Google Scholar 

  14. Machann J, Thamer C, Stefan N, Schwenzer NF, Kantartzis K, Haring HU, Claussen CD, Fritsche A, Schick F (2010) Follow-up whole-body assessment of adipose tissue compartments during a lifestyle intervention in a large cohort at increased risk for type 2 diabetes. Radiology 257:353–363. doi:10.1148/radiol.10092284

    Article  PubMed  Google Scholar 

  15. Molleston JP, White F, Teckman J, Fitzgerald JF (2002) Obese children with steatohepatitis can develop cirrhosis in childhood. Am J Gastroenterol 97:2460–2462. doi:10.1111/j.1572-0241.2002.06003.x

    Article  PubMed  Google Scholar 

  16. Savoye M, Shaw M, Dziura J, Tamborlane WV, Rose P, Guandalini C, Goldberg-Gell R, Burgert TS, Cali AM, Weiss R, Caprio S (2007) Effects of a weight management program on body composition and metabolic parameters in overweight children: a randomized controlled trial. JAMA 297:2697–2704. doi:10.1001/jama.297.24.2697

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz B, Jacobs DR Jr, Moran A, Steinberger J, Hong CP, Sinaiko AR (2008) Measurement of insulin sensitivity in children: comparison between the euglycemic-hyperinsulinemic clamp and surrogate measures. Diabetes Care 31:783–788. doi:10.2337/dc07-1376

    Article  CAS  PubMed  Google Scholar 

  18. Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C (2006) Prevalence of fatty liver in children and adolescents. Pediatrics 118:1388–1393. doi:10.1542/peds.2006-1212

    Article  PubMed  Google Scholar 

  19. Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, Imielinska C, Ross R, Heymsfield SB (2003) Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 11:5–16. doi:10.1038/oby.2003.3

    Article  PubMed Central  PubMed  Google Scholar 

  20. Siegel MJ, Hildebolt CF, Bae KT, Hong C, White NH (2007) Total and intraabdominal fat distribution in preadolescents and adolescents: measurement with MR imaging. Radiology 242:846–856. doi:10.1148/radiol.2423060111

    Article  PubMed  Google Scholar 

  21. Taylor RW, Gold E, Manning P, Goulding A (1997) Gender differences in body fat content are present well before puberty. Int J Obes Relat Metab Disord 21:1082–1084. doi:10.1038/sj.ijo.0800522

    Article  CAS  PubMed  Google Scholar 

  22. Turner RC, Holman RR, Matthews D, Hockaday TD, Peto J (1979) Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism 28:1086–1096. doi:10.1016/0026-0495(79)90146-X

    Article  CAS  PubMed  Google Scholar 

  23. van der Heijden GJ, Toffolo G, Manesso E, Sauer PJ, Sunehag AL (2009) Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents. J Clin Endocrinol Metab 94:4292–4299. doi:10.1210/jc.2009-1379

    Article  PubMed Central  PubMed  Google Scholar 

  24. van der Heijden GJ, Wang ZJ, Chu ZD, Sauer PJ, Haymond MW, Rodriguez LM, Sunehag AL (2010) A 12-week aerobic exercise program reduces hepatic fat accumulation and insulin resistance in obese, Hispanic adolescents. Obesity (Silver Spring) 18:384–390. doi:10.1038/oby.2009.274

    Article  Google Scholar 

  25. Vitola BE, Deivanayagam S, Stein RI, Mohammed BS, Magkos F, Kirk EP, Klein S (2009) Weight loss reduces liver fat and improves hepatic and skeletal muscle insulin sensitivity in obese adolescents. Obesity (Silver Spring) 17:1744–1748. doi:10.1038/oby.2009.171

    Article  CAS  Google Scholar 

  26. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495. doi:10.2337/diacare.27.6.1487

    Article  PubMed  Google Scholar 

  27. Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, Boselli L, Barbetta G, Allen K, Rife F, Savoye M, Dziura J, Sherwin R, Shulman GI, Caprio S (2003) Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet 362:951–957. doi:10.1016/S0140-6736(03)14364-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Members of the DISKUS Study Group are Stefan Ehehalt, Roland Schweizer, Nicole Schurr, Coya Pfaff, Andreas Neu, Hans Peter Haber, Michael B. Ranke, and Gerhard Binder, Department of Paediatrics, University Children’s Hospital, Tübingen, Germany; Perikles Simon, Institute of Sport Science, Department of Sports Medicine, Johannes Gutenberg University, Mainz, Germany; Andre Lacroix, Jochen Hansel, and Andreas Nieß, University Department of Medicine, Department of Sports Medicine, Tübingen, Germany; Katrin Giel, Markus Schrauth, Paul Enck, and Stephan Zipfel, University Department of Medicine, Department of Psychosomatic Medicine and Psychotherapy, Tübingen, Germany; Jürgen Machann, Fabian Springer, Verena Ballweg, and Fritz Schick, Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Tübingen, Germany; Pablo Brockmann and Michael Urschitz, Department of Neonatology, University Children’s Hospital, Tübingen, Germany; and Huu Phuc Nguyen, Institute of Human Genetics, Department of Medical Genetics, Tübingen, Germany

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Written informed consent was obtained from all participants and their legal guardians prior to their inclusion in the study. The study has been approved by the appropriate ethics committee and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Authors’ contributions

F.S., V.B., R.S., F.S., M.B.R., G.B., and S.E. prepared the manuscript and performed literature research. F.S. and V.B. performed whole-body MRI/MRS examinations and evaluated the data under the supervision of F.S.; S.E. and R.S. examined the patients during lifestyle intervention and acquired anthropometric/metabolic data. F.S., M.B.R., and G.B. supervised the study and helped in data analysis performed by F.S. V.B., and S.E. All authors reviewed and approved the manuscript on behalf of the DISKUS Study Group.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Fabian Springer.

Additional information

Communicated by Peter de Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Springer, F., Ballweg, V., Schweizer, R. et al. Changes in whole-body fat distribution, intrahepatic lipids, and insulin resistance of obese adolescents during a low-level lifestyle intervention. Eur J Pediatr 174, 1603–1612 (2015). https://doi.org/10.1007/s00431-015-2577-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-015-2577-6

Keywords

Navigation