Skip to main content

Advertisement

Log in

Innate immune response in patients with acute Chikungunya disease

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Chikungunya disease (CHIKD) is an arbovirose that presents with high morbidity, mainly due to arthralgia. Inflammatory mediators including IL-6, IL-1β, GM-CSF and others have been implicated in the pathogenesis of CHIKD, whilst type I interferons can be associated with better outcomes. The role of pattern recognition receptors has been studied incompletely. Here, we evaluated the expression of RNA-specific PRRs, their adaptor molecules and downstream cytokines in acute CHIKD patients. Twenty-eight patients were recruited during the 3rd–5th day after the symptoms onset for clinical examination, peripheral blood collection and qRT-PCR analysis of PBMC to compare to the healthy control group (n = 20). We observed common symptoms of acute CHIKD, with fever, arthralgia, headache and myalgia being the most frequent. Compared with uninfected controls, acute CHIKV infection upregulates the expression of the receptors TLR3, RIG-I and MDA5, and also the adaptor molecule TRIF. Regarding cytokine expression, we found an upregulation of IL-6, IL-12, IFN-α, IFN-β and IFN-γ, which are related directly to the inflammatory or antiviral response. The TLR3-TRIF axis correlated with high expression of IL-6 and IFN-α. Interestingly, greater expression of MDA5, IL-12 and IFN-α was related to lower viral loads in CHIKD acute patients. Together, these findings help to complete the picture of innate immune activation during acute CHIKD, while confirming the induction of strong antiviral responses. Drawing the next steps in the understanding of the immunopathology and virus clearance mechanisms of CHIKD should be of utter importance in the aid of the development of effective treatment to reduce the severity of this debilitating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data has not been deposited in any repository but is available to anyone who requests it from the corresponding author.

References

  1. Higgs S, Vanlandingham D (2015) Chikungunya virus and its mosquito vectors. Vector-Borne Zoonotic Dis 15:231–240. https://doi.org/10.1089/vbz.2014.1745

    Article  PubMed  Google Scholar 

  2. Vu DM, Jungkind D, LaBeaud AD (2017) Chikungunya virus. Clin Lab Med 37:371–382. https://doi.org/10.1016/j.cll.2017.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Long KM, Heise MT (2015) Protective and pathogenic responses to chikungunya virus infection. Curr Trop Med Rep 2:13–21. https://doi.org/10.1007/s40475-015-0037-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nunes MRT, Faria NR, de Vasconcelos JM, et al (2015) Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med 13:. https://doi.org/10.1186/s12916-015-0348-x

  5. (2017) Chikungunya. In: World Health Organ. WHO. https://www.who.int/news-room/fact-sheets/detail/chikungunya. Accessed 17 Jul 2020

  6. Vairo F, Haider N, Kock R et al (2019) Chikungunya: epidemiology, pathogenesis, clinical features, management, and prevention. Infect Dis Clin North Am 33:1003–1025. https://doi.org/10.1016/j.idc.2019.08.006

    Article  PubMed  Google Scholar 

  7. Mavalankar D, Shastri P, Raman P (2007) Chikungunya epidemic in India: a major public-health disaster. Lancet Infect Dis 7:306–307. https://doi.org/10.1016/S1473-3099(07)70091-9

    Article  PubMed  Google Scholar 

  8. Renault P, Josseran L, Pierre V Chikungunya-related Fatality Rates, Mauritius, India, and Reunion Island—Volume 14, Number 8—August 2008 - Emerging Infectious Diseases journal—CDC. https://doi.org/10.3201/eid1408.080201

  9. Freitas ARR, Cavalcanti L, Von Zuben AP, Donalisio MR (2017) Excess mortality related to chikungunya epidemics in the context of co-circulation of other arboviruses in Brazil. PLoS Curr 9:. https://doi.org/10.1371/currents.outbreaks.14608e586cd321d8d5088652d7a0d884

  10. Burt F, Chen W, Mahalingam S (2014) Chikungunya virus and arthritic disease. Lancet Infect Dis 14:789–790. https://doi.org/10.1016/S1473-3099(14)70869-2

    Article  PubMed  Google Scholar 

  11. Zaid A, Gérardin P, Taylor A et al (2018) Review: Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management. Arthritis Rheumatol 70:484–495. https://doi.org/10.1002/art.40403

    Article  PubMed  Google Scholar 

  12. Suhrbier A (2019) Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 15:597–611. https://doi.org/10.1038/s41584-019-0276-9

    Article  CAS  PubMed  Google Scholar 

  13. Azevedo R do S da S, Oliveira CS, Vasconcelos PF da C, et al (2015) Chikungunya risk for Brazil. Rev Saúde Pública 49:. https://doi.org/10.1590/S0034-8910.2015049006219

  14. Burt FJ, Chen W, Miner JJ et al (2017) Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect Dis 17:e107–e117. https://doi.org/10.1016/S1473-3099(16)30385-1

    Article  CAS  PubMed  Google Scholar 

  15. Goupil BA, Mores CN (2016) A review of Chikungunya virus-induced arthralgia: clinical manifestations, therapeutics, and pathogenesis. Open Rheumatol J 10:129–140. https://doi.org/10.2174/1874312901610010129

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sá PK de O, Nunes M de M, Leite IR, et al (2017) Chikungunya virus infection with severe neurologic manifestations: report of four fatal cases. Rev Soc Bras Med Trop 50:265–268. https://doi.org/10.1590/0037-8682-0375-2016

  17. Teng T-S, Kam Y-W, Tan JJ, Ng LF (2011) Host response to Chikungunya virus and perspectives for immune-based therapies. Future Virol 6:975–984. https://doi.org/10.2217/fvl.11.67

    Article  Google Scholar 

  18. Sissoko D, Malvy D, Ezzedine K, et al (2009) Post-Epidemic Chikungunya Disease on Reunion Island: Course of Rheumatic Manifestations and Associated Factors over a 15-Month Period. PLoS Negl Trop Dis 3:e389. https://doi.org/10.1371/journal.pntd.0000389

  19. Gérardin P, Fianu A, Michault A et al (2013) Predictors of Chikungunya rheumatism: a prognostic survey ancillary to the TELECHIK cohort study. Arthritis Res Ther 15:R9. https://doi.org/10.1186/ar4137

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brito CAA de (2017) Alert: Severe cases and deaths associated with Chikungunya in Brazil. Rev Soc Bras Med Trop 50:585–589. https://doi.org/10.1590/0037-8682-0479-2016

    Article  Google Scholar 

  21. Crosby L, Perreau C, Madeux B et al (2016) Severe manifestations of chikungunya virus in critically ill patients during the 2013–2014 Caribbean outbreak. Int J Infect Dis IJID Off Publ Int Soc Infect Dis 48:78–80. https://doi.org/10.1016/j.ijid.2016.05.010

    Article  Google Scholar 

  22. Simião AR, Barreto FK de A, Oliveira R de MAB, et al (2019) A major chikungunya epidemic with high mortality in northeastern Brazil. Rev Soc Bras Med Trop 52:e20190266. https://doi.org/10.1590/0037-8682-0266-2019

  23. Akahata W, Yang Z, Andersen H et al (2010) A VLP vaccine for epidemic Chikungunya virus protects non-human primates against infection. Nat Med 16:334–338. https://doi.org/10.1038/nm.2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoarau J-J, Jaffar Bandjee M-C, Krejbich Trotot P et al (1950) (2010) Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol Baltim Md 184:5914–5927. https://doi.org/10.4049/jimmunol.0900255

    Article  CAS  Google Scholar 

  25. White LK, Sali T, Alvarado D et al (2011) Chikungunya Virus Induces IPS-1-Dependent Innate Immune Activation and Protein Kinase R-Independent Translational Shutoff. J Virol 85:606–620. https://doi.org/10.1128/JVI.00767-10

    Article  CAS  PubMed  Google Scholar 

  26. Chow KT, Gale M, Loo Y-M (2018) RIG-I and Other RNA Sensors in Antiviral Immunity. Annu Rev Immunol 36:667–694. https://doi.org/10.1146/annurev-immunol-042617-053309

    Article  CAS  PubMed  Google Scholar 

  27. Crosse KM, Monson EA, Beard MR, Helbig KJ (2018) Interferon-Stimulated Genes as Enhancers of Antiviral Innate Immune Signaling. J Innate Immun 10:85–93. https://doi.org/10.1159/000484258

    Article  CAS  PubMed  Google Scholar 

  28. Schilte C, Couderc T, Chretien F et al (2010) Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med 207:429–442. https://doi.org/10.1084/jem.20090851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dutta SK, Tripathi A (2017) Association of toll-like receptor polymorphisms with susceptibility to chikungunya virus infection. Virology 511:207–213. https://doi.org/10.1016/j.virol.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  30. Winkler ES, Shrihari S, Hykes BL et al (2020) The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis. Cell 182:901-918.e18. https://doi.org/10.1016/j.cell.2020.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y-G, Siripanyaphinyo U, Tumkosit U et al (2012) Poly (I:C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells. Virol J 9:114. https://doi.org/10.1186/1743-422X-9-114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Her Z, Teng T, Tan JJ, et al (2015) Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus‐specific neutralizing antibody response. EMBO Mol Med 7:24–41. https://doi.org/10.15252/emmm.201404459

  33. Couderc T, Chrétien F, Schilte C, et al (2008) A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease. PLoS Pathog 4:e29. https://doi.org/10.1371/journal.ppat.0040029

  34. Messaoudi I, Vomaske J, Totonchy T, et al (2013) Chikungunya Virus Infection Results in Higher and Persistent Viral Replication in Aged Rhesus Macaques Due to Defects in Anti-Viral Immunity. PLoS Negl Trop Dis 7:e2343. https://doi.org/10.1371/journal.pntd.0002343

  35. Chow A, Her Z, Ong EKS et al (2011) Persistent arthralgia induced by chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J Infect Dis 203:149–157. https://doi.org/10.1093/infdis/jiq042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colavita F, Vita S, Lalle E, et al (2018) Overproduction of IL-6 and Type-I IFN in a Lethal Case of Chikungunya Virus Infection in an Elderly Man During the 2017 Italian Outbreak. Open Forum Infect Dis 5:. https://doi.org/10.1093/ofid/ofy276

  37. Tanabe ISB, Santos EC, Tanabe ELL et al (2019) Cytokines and chemokines triggered by Chikungunya virus infection in human patients during the very early acute phase. Trans R Soc Trop Med Hyg 113:730–733. https://doi.org/10.1093/trstmh/trz065

    Article  CAS  PubMed  Google Scholar 

  38. Ninla-aesong P, Mitarnun W, Noipha K (2019) Proinflammatory Cytokines and Chemokines as Biomarkers of Persistent Arthralgia and Severe Disease After Chikungunya Virus Infection: A 5-Year Follow-Up Study in Southern Thailand. Viral Immunol 32:442–452. https://doi.org/10.1089/vim.2019.0064

    Article  CAS  PubMed  Google Scholar 

  39. Lanciotti RS, Kosoy OL, Laven JJ et al (2007) Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis 13:764–767. https://doi.org/10.3201/eid1305.070015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Labadie K, Larcher T, Joubert C et al (2010) Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 120:894–906. https://doi.org/10.1172/JCI40104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Poo YS, Rudd PA, Gardner J, et al (2014) Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl Trop Dis 8:e3354. https://doi.org/10.1371/journal.pntd.0003354

  42. Soumahoro M-K, Gérardin P, Boëlle P-Y, et al (2009) Impact of Chikungunya Virus Infection on Health Status and Quality of Life: A Retrospective Cohort Study. PLOS ONE 4:e7800. https://doi.org/10.1371/journal.pone.0007800

  43. Manimunda SP, Vijayachari P, Uppoor R et al (2010) Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans R Soc Trop Med Hyg 104:392–399. https://doi.org/10.1016/j.trstmh.2010.01.011

    Article  PubMed  Google Scholar 

  44. Miner JJ, Aw-Yeang H-X, Fox JM et al (2015) Chikungunya viral arthritis in the United States: a mimic of seronegative rheumatoid arthritis. Arthritis Rheumatol Hoboken NJ 67:1214–1220. https://doi.org/10.1002/art.39027

    Article  CAS  Google Scholar 

  45. Rahman M, Yamagishi J, Rahim R, et al East/Central/South African Genotype in a Chikungunya Outbreak, Dhaka, Bangladesh, 2017—Volume 25, Number 2—February 2019—Emerging Infectious Diseases journal - CDC. https://doi.org/10.3201/eid2502.180188

  46. Pryke KM, Abraham J, Sali TM, et al (2017) A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. mBio 8:. https://doi.org/10.1128/mBio.00452-17

  47. Akhrymuk I, Frolov I, Frolova EI (2016) Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode. Virology 487:230–241. https://doi.org/10.1016/j.virol.2015.09.023

    Article  CAS  PubMed  Google Scholar 

  48. Lazear HM, Pinto AK, Ramos HJ et al (2013) Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of west nile virus from the central nervous system. J Virol 87:11401–11415. https://doi.org/10.1128/JVI.01403-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olagnier D, Scholte FEM, Chiang C et al (2014) Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response. J Virol 88:4180–4194. https://doi.org/10.1128/JVI.03114-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wahid B, Ali A, Rafique S, Idrees M (2017) Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis 58:69–76. https://doi.org/10.1016/j.ijid.2017.03.006

    Article  PubMed  Google Scholar 

  51. Kam Y-W, Simarmata D, Chow A et al (2012) Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J Infect Dis 205:1147–1154. https://doi.org/10.1093/infdis/jis033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ng LFP, Chow A, Sun Y-J, et al (2009) IL-1β, IL-6, and RANTES as Biomarkers of Chikungunya Severity. PLoS ONE 4:e4261. https://doi.org/10.1371/journal.pone.0004261

  53. Lum F-M, Ng LFP (2015) Cellular and molecular mechanisms of chikungunya pathogenesis. Antiviral Res 120:165–174. https://doi.org/10.1016/j.antiviral.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  54. Phuklia W, Kasisith J, Modhiran N et al (2013) Osteoclastogenesis induced by CHIKV-infected fibroblast-like synoviocytes: a possible interplay between synoviocytes and monocytes/macrophages in CHIKV-induced arthralgia/arthritis. Virus Res 177:179–188. https://doi.org/10.1016/j.virusres.2013.08.011

    Article  CAS  PubMed  Google Scholar 

  55. Teng T-S, Kam Y-W, Lee B et al (2015) A Systematic Meta-analysis of Immune Signatures in Patients With Acute Chikungunya Virus Infection. J Infect Dis 211:1925–1935. https://doi.org/10.1093/infdis/jiv049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dupuis-Maguiraga L, Noret M, Brun S, et al (2012) Chikungunya disease: infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Negl Trop Dis 6:e1446. https://doi.org/10.1371/journal.pntd.0001446

  57. Venugopalan A, Ghorpade RP, Chopra A (2014) Cytokines in acute chikungunya. PloS One 9:e111305. https://doi.org/10.1371/journal.pone.0111305

  58. Wauquier N, Becquart P, Nkoghe D et al (2011) The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis 204:115–123. https://doi.org/10.1093/infdis/jiq006

    Article  CAS  PubMed  Google Scholar 

  59. Kashyap RS, Morey S, Bhullar S et al (2014) Determination of toll-like receptor-induced cytokine profiles in the blood and cerebrospinal fluid of chikungunya patients. NeuroImmunoModulation 21:338–346. https://doi.org/10.1159/000358240

    Article  CAS  PubMed  Google Scholar 

  60. da Silva MHM, Moises RNC, Alves BEB et al (2019) Innate immune response in patients with acute Zika virus infection. Med Microbiol Immunol (Berl) 208:703–714. https://doi.org/10.1007/s00430-019-00588-8

    Article  CAS  PubMed  Google Scholar 

  61. Simarmata D, Ng DCE, Kam Y-W et al (2016) Early clearance of Chikungunya virus in children is associated with a strong innate immune response. Sci Rep 6:1–8. https://doi.org/10.1038/srep26097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support by the National Council for Scientific and Technological Development (CNPq Grants no. 400328/2014-3, 404904/2016-5 and 311055/2019-2) and the Brazilian Federal.

Funding

This work was supported by the National Council for Scientific and Technological Development—CNPq [Grants n.º 311055/2019-2; n.º 404904/2016-5; 400328/2014-3] and the Brazilian Federal Agency for Support and Evaluation of Graduate Education—CAPES. Agency for Support and Evaluation of Graduate Education—CAPES.

Author information

Authors and Affiliations

Authors

Contributions

WPB: conceptualization, formal analysis, investigation, roles/writing—original draft and writing—review & editing; RNCM: conceptualization, methodology and investigation; ACAS: conceptualization, formal analysis, investigation, roles/writing—original draft and writing—review & editing; HWBP: methodology and investigation; JMGdA: methodology, investigation, funding acquisition and writing—review & editing; PMdMG: methodology, formal analysis, investigation, funding acquisition and writing—review & editing; José VF: conceptualization, formal analysis, investigation, funding acquisition, writing—review & editing and supervision; MSLN: conceptualization, formal analysis, investigation, funding acquisition, roles/writing—original draft; writing—review & editing and supervision.

Corresponding author

Correspondence to Manuela Sales Lima Nascimento.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethics approval

The study was approved by the Research Ethics Committee, with a Certificate from the Brazilian System of Ethics in Research (CAEE-SISNEP) protocol number CAAE: 51057015.5.0000.5537. All procedures performed in this study involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments.

Consent to participate and for publication

Informed consent was obtained from all participants or their legal guardians before the beginning of the study. All participants agreed with the use of data for the purposes of scientific publications.

Additional information

Edited by Christian Bogdan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 251 KB)

Supplementary file2 (PNG 597 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, W.P., Moizéis, R.N.C., Salmeron, A.C.A. et al. Innate immune response in patients with acute Chikungunya disease. Med Microbiol Immunol 212, 279–290 (2023). https://doi.org/10.1007/s00430-023-00771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-023-00771-y

Keywords

Navigation