Skip to main content

Advertisement

Log in

Simultaneous analysis of multiple T helper subsets in leprosy reveals distinct patterns of Th1, Th2, Th17 and Tregs markers expression in clinical forms and reactional events

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Leprosy is a chronic infectious disease caused by Mycobacterium leprae. Previous studies have demonstrated that the difference among clinical forms of leprosy can be associated with the immune response of patients, mainly by T helper (Th) and regulatory T cells (Tregs). Then, aiming at clarifying the immune response, the expression of cytokines related to Th1, Th2, Th17 and Tregs profiles were evaluated by qPCR in 87 skin biopsies from leprosy patients. Additionally, cytokines and anti-PGL-1 antibodies were determined in serum by ELISA. The results showed that the expression of various targets (mRNA) related to Th1, Th2, Th17 and Tregs were significantly modulated in leprosy when compared with healthy individuals, suggesting the presence of a mixed profile. In addition, the targets related to Th1 predominated in the tuberculoid pole and side and Th2 and Tregs predominated in the lepromatous pole and side; however, Th17 targets showed a mixed profile. Concerning reactional events, Tregs markers were decreased and IL-15 was increased in reversal reaction and IL-17F, CCL20 and IL-8 in erythema nodosum leprosum, when compared with the respective non-reactional leprosy patients. Additionally, ELISA analysis demonstrated that IL-22, IL-6, IL-10 and anti-PGL-1 antibody levels were significantly higher in the serum of patients when compared with healthy individuals, and IL-10 and anti-PGL-1 antibodies were also increased in the lepromatous pole and side. Together, these results indicate that Th1, Th2 and Th17 are involved in the determination of clinical forms of leprosy and suggest that decreased Tregs activity may be involved in the pathogenesis of reactional events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL (2006) The continuing challenges of leprosy. Clin Microbiol Rev 19:338–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization (2015) Global leprosy update 2015: time for action, accountability and inclusion. Wkly Epidemiol Rec 91:405–420

    Google Scholar 

  3. Bratschi MW, Steinmann P, Wickenden A, Gillis TP (2015) Current knowledge on Mycobacterium leprae transmission: a systematic literature review. Lepr Rev 86:142–155

    PubMed  Google Scholar 

  4. Ridley DS, Jopling WH (1966) Classification of leprosy according to immunity. a five-group system. Int J Lepr Other Mycobact Dis 34:255–273

    CAS  PubMed  Google Scholar 

  5. Yamamura M, Wang XH, Ohmen JD, Uyemura K, Rea TH, Bloom BR, Modlin RL (1992) Cytokine patterns of immunologically mediated tissue damage. J Immunol 149:1470–1475

    CAS  PubMed  Google Scholar 

  6. Sieling PA, Modlin RL (1994) Cytokine patterns at the site of mycobacterial infection. Immunobiology 191:378–387

    Article  CAS  PubMed  Google Scholar 

  7. Sieling PA, Wang XH, Gately MK, Oliveros JL, McHugh T, Barnes PF, Wolf SF, Golkar L, Yamamura M, Yogi Y, Uyemura K, Rea TH, Modlin RL (1994) IL-12 regulates T helper type 1 cytokine responses in human infectious disease. J Immunol 153:639–3647

    Google Scholar 

  8. Misra N, Murtaza A, Walker B, Narayan NP, Misra RS, Ramesh V, Singh S, Colston MJ, Nath I (1995) Cytokine profile of circulating T cells of leprosy patients reflects both indiscriminate and polarized T-helper subsets: T-helper phenotype is stable and uninfluenced by related antigens of Mycobacterium leprae. Immunology 86:97–103

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nath I, Saini C, Valluri VL (2015) Immunology of leprosy and diagnostic challenges. Clin Dermatol 33:90–98. doi:10.1016/j.clindermatol.2014.07.005

    Article  PubMed  Google Scholar 

  10. de Souza VN, Iyer AM, Lammas DA, Naafs B, Das PK (2016) Advances in leprosy immunology and the field application: a gap to bridge. Clin Dermatol 34:82–95. doi:10.1016/j.clindermatol.2015.10.013

    Article  PubMed  Google Scholar 

  11. Fonseca AB, Simon MD, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS, Reed SG, de Jesus AR (2017) The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty 6:5. doi:10.1186/s40249-016-0229-3

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saini C, Tarique M, Rai R, Siddiqui A, Khanna N, Sharma A (2017) T helper cells in leprosy: an update. Immunol Lett 184:61–66. doi:10.1016/j.imlet.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  13. Campbell DJ, Koch MA (2011) Phenotypical and functional specialization of FOXP3 + regulatory T cells. Nat Rev Immunol 11:119–130. doi:10.1038/nri2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Modlin RL, Kato H, Mehra V, Nelson EE, Fan XD, Rea TH, Pattengale PK, Bloom BR (1986) Genetically restricted suppressor T-cell clones derived from lepromatous leprosy lesions. Nature 322:459–461

    Article  CAS  PubMed  Google Scholar 

  15. Ottenhoff TH, Haanen JB, Geluk A, Mutis T, Ab BK, Thole JE, van Schooten WC, van den Elsen PJ, de Vries RR (1991) Regulation of mycobacterial heat-shock protein-reactive T cells by HLA class II molecules: lessons from leprosy. Immunol Rev 121:171–191

    Article  CAS  PubMed  Google Scholar 

  16. Mutis T, Cornelisse YE, Datema G, van den Elsen PJ, Ottenhoff TH, de Vries RR (1994) Definition of a human suppressor T-cell epitope. Proc Natl Acad Sci USA 91:9456–9460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Misra N, Selvakumar M, Singh S, Bharadwaj M, Ramesh V, Misra RS, Nath I (1995) Monocyte derived IL 10 and PGE2 are associated with the absence of Th 1 cells and in vitro T cell suppression in lepromatous leprosy. Immunol Lett 48:123–128

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes C, Gonçalves HS, Cabral PB, Pinto HC, Pinto MI, Câmara LM (2013) Increased frequency of CD4 and CD8 regulatory T cells in individuals under 15 years with multibacillary leprosy. PLoS ONE 8:e79072. doi:10.1371/journal.pone.0079072

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bobosha K, Wilson L, van Meijgaarden KE, Bekele Y, Zewdie M, van der Ploeg-van Schip JJ, Abebe M, Hussein J, Khadge S, Neupane KD, Hagge DA, Jordanova ES, Aseffa A, Ottenhoff TH, Geluk A (2014) T-cell regulation in lepromatous leprosy. PLoS Negl Trop Dis 8:e2773. doi:10.1371/journal.pntd.0002773

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saini C, Ramesh V, Nath I (2014) Increase in TGF-β secreting CD4+CD25+ FOXP3+ T regulatory cells in anergic lepromatous leprosy patients. PLoS Negl Trop Dis 8:e2639. doi:10.1371/journal.pntd.0002639

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sadhu S, Khaitan BK, Joshi B, Sengupta U, Nautival AK, Mitra DK (2016) Reciprocity between regulatory T Cells and Th17 Cells: relevance to polarized immunity in leprosy. PLoS Negl Trop Dis 10:e0004338. doi:10.1371/journal.pntd.0004338

    Article  PubMed  PubMed Central  Google Scholar 

  22. Geluk A (2013) Challenges in immunodiagnostic tests for leprosy. Expert Opin Med Diagn 7:265–274. doi:10.1517/17530059.2013.786039

    Article  CAS  PubMed  Google Scholar 

  23. Torchinsky MB, Blander JM (2010) T helper 17 cells: discovery, function, and physiological trigger. Cell Mol Life Sci 67:1407–1421. doi:10.1007/s00018-009-0248-3

    Article  CAS  PubMed  Google Scholar 

  24. Saini C, Ramesh V, Nath I (2013) CD4+ Th17 cells discriminate clinical types and constitute a third subset of non Th1, non Th2 T cells in human leprosy. PLoS Negl Trop Dis 7:e2338. doi:10.1371/journal.pntd.0002338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaitanya S, Lavania M, Turankar RP, Karri SR, Sengupta U (2012) Increased serum circulatory levels of interleukin 17F in type 1 reactions of leprosy. J Clin Immunol 32:1415–1420. doi:10.1007/s10875-012-9747-3

    Article  CAS  PubMed  Google Scholar 

  26. Martiniuk F, Giovinazzo J, Tan AU, Shahidullah R, Haslett P, Kaplan G, Levis WR (2012) Lessons of leprosy: the emergence of Th17 cytokines during type II reactions (ENL) is teaching us about T-cell plasticity. J Drugs Dermatol 11:626–630

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Garlet GP, Horwat R, Ray HL Jr, Garlet TP, Silveira EM, Campanelli AP, Trombone AP, Letra A, Silva RM (2012) Expression analysis of wound healing genes in human periapical granulomas of progressive and stable nature. J Endod 38:185–190. doi:10.1016/j.joen.2011.09.011

    Article  PubMed  Google Scholar 

  28. Brett SJ, Payne SN, Gigg J, Burgess P, Gigg R (1986) Use of synthetic glycoconjugates containing the Mycobacterium leprae specific and immunodominant epitope of phenolic glycolipid-I in the serology of leprosy. Clin Exp Immunol 64:476–483

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Modlin RL (1994) Th1-Th2 paradigm: insights from leprosy. J Invest Dermatol 102:828–832

    Article  CAS  PubMed  Google Scholar 

  30. Modlin RL (2002) Learning from leprosy: insights into contemporary immunology from an ancient disease. Skin Pharmacol Appl Skin Physiol 15:1–6

    CAS  PubMed  Google Scholar 

  31. Wolk K, Witte E, Witte K, Warszawska K, Sabat R (2010) Biology of interleukin-22. Semin Immunopathol 32:17–31. doi:10.1007/s00281-009-0188-x

    Article  CAS  PubMed  Google Scholar 

  32. Akdis M, Palomares O, van de Veen W, van Splunter M, Akdis CA (2012) TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol 129:1438–1449. doi:10.1016/j.jaci.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  33. de Lima Silveira E, de Sousa JR, de Sousa Aarão TL, Fuzii HT, Dias Junior LB, Carneiro FR, Quaresma JÁ (2015) New immunologic pathways in the pathogenesis of leprosy: role for Th22 cytokines in the polar forms of the disease. J Am Acad Dermatol 72:729–730. doi:10.1016/j.jaad.2014.11.023

    Article  Google Scholar 

  34. Attia EA, Abdallah M, El-Khateeb E, Saad AA, Lotfi RA, Abdallah M, El-Shennawy D (2014) Serum Th17 cytokines in leprosy: correlation with circulating CD4(+) CD25 (high)FoxP3 (+) T-regs cells, as well as down regulatory cytokines. Arch Dermatol Res 306:793–801. doi:10.1007/s00403-014-1486-2

    Article  CAS  PubMed  Google Scholar 

  35. Saini C, Siddiqui A, Ramesh V, Nath I (2016) Leprosy reactions show increased Th17 cell activity and reduced FOXP3+ Tregs with concomitant decrease in TGF-β and increase in IL-6. PLoS Negl Trop Dis 10:e0004592. doi:10.1371/journal.pntd.0004592

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jabri B, Abadie V (2015) IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol 15:771–783. doi:10.1038/nri3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patidar M, Yadav N, Dalai SK (2016) Interleukin 15: a key cytokine for immunotherapy. Cytokine Growth Factor Rev 31:49–59. doi:10.1016/j.cytogfr.2016.06.001

    Article  PubMed  Google Scholar 

  38. Montoya D, Inkeles MS, Liu PT, Realegeno S, Teles RM, Vaidya P, Munoz MA, Schenk M, Swindell WR, Chun R, Zavala K, Hewison M, Adams JS, Horvath S, Pellegrini M, Bloom BR, Modlin RL (2014) IL-32 is a molecular marker of a host defense network in human tuberculosis. Sci Transl Med 6(250):250ra114. doi:10.1126/scitranslmed.3009546

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bloom BR, Modlin RL (2016) Mechanisms of defense against intracellular pathogens mediated by human macrophages. Microbiol Spectr. doi:10.1128/microbiolspec

    PubMed  Google Scholar 

  40. Fachin LR, Soares CT, Belone AF, Trombone AP, Rosa PS, Guidella CC, Franco MF (2017) Immunohistochemical assessment of cell populations in leprosy-spectrum lesions and reactional forms. Histol Histopathol 32:385–396. doi:10.14670/HH-11-804

    PubMed  Google Scholar 

  41. Vieira AP, Trindade MA, Pagliari C, Avancini J, Sakai-Valente NY, Duarte AJ, Benard G (2016) Development of type 2, but not type 1, leprosy reactions is associated with a severe reduction of circulating and in situ regulatory T-cells. Am J Trop Med Hyg 94:721–727. doi:10.4269/ajtmh.15-0673

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kahawita IP, Lockwood DN (2008) Towards understanding the pathology of erythema nodosum leprosum. Trans R Soc Trop Med Hyg 102:329–337. doi:10.1016/j.trstmh.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  43. Santos MB, de Oliveira DT, Cazzaniga RA, Varjão CS, Santos PLD, Santos MLB, Correia CB, Faria DR, Simon MDV, Silva JS, Dutra WO, Reed SG, Duthie MS, de Almeida RP, de Jesus AR (2017) Distinct roles of Th17 and Th1 cells in inflammatory responses associated with the presentation of paucibacillary leprosy and leprosy reactions Th17 immune response in leprosy. Scand J Immunol. doi:10.1111/sji.12558

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (2009/06122-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Favaro Trombone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, M.d.S., Marques, H., Binelli, L.S. et al. Simultaneous analysis of multiple T helper subsets in leprosy reveals distinct patterns of Th1, Th2, Th17 and Tregs markers expression in clinical forms and reactional events. Med Microbiol Immunol 206, 429–439 (2017). https://doi.org/10.1007/s00430-017-0519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-017-0519-9

Keywords

Navigation