Skip to main content

Advertisement

Log in

Enhancement of the pathogenicity of Staphylococcus aureus strain Newman by a small noncoding RNA SprX1

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The pathogenesis of Staphylococcus aureus from local infection to systemic dissemination involves a range of virulence factors including structural and secreted products. Among various control mechanisms, small noncoding RNAs are involved in the regulation of multiple pathogenicity factors in S. aureus. The sRNA SprX which is encoded in the pathogenicity island of methicillin-susceptible S. aureus strain Newman and was shown to influence antibiotic resistance previously, upregulated the expression of virulence genes, especially the cell wall-associated clumping factor B (ClfB) and delta hemolysin (Hld). Bioinformatic analysis revealed several multiple mRNAs associated with pathogenicity as targets for SprX1, one of the three copies of sprX. Both overexpression and chromosomal disruption of sprX1 supported the scheme of upregulation of clfB and hld expression. Altered expression of SprX1 altered the levels of Hld and ClfB mRNAs, hemolysis, clumping of cells, biofilm formation by plate adhesion studies and confocal microscopic analysis as well as infection pathology of modified strains in mice models. ClfB and Hld mRNAs interacted directly with SprX1 in in vitro assays. Increased level of the regulatory RNA, namely RNAIII, that comprises Hld mRNA and also regulates the biofilm formation, indicates that SprX1 may also function through RNAIII for regulating virulence factors. An immunodominant protein, antigen A, was downregulated by SprX1 in two-dimensional electrophoresis. Taken together, these results signify the role of sRNA SprX in the pathogenicity of S. aureus Newman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Foster TJ, Geoghegan JA, Ganesh VK, Hook M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62

    Article  CAS  PubMed  Google Scholar 

  2. Powers ME, Wardenburg JB (2014) Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog 10:e1003871

    Article  PubMed  PubMed Central  Google Scholar 

  3. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136:615–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Storz G, Altuvia S, Wassarman KM (2005) An abundance of RNA regulators. Annu Rev Biochem 74:199–217

    Article  CAS  PubMed  Google Scholar 

  5. Sassi M, Augagneur Y, Mauro T, Ivain L, Chabelskaya S, Hallier M et al (2015) SRD: a Staphylococcus regulatory RNA database. RNA 21:1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M et al (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcriptional regulator Rot by an antisense mechanism. Genes Dev 21:1353–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bohn C, Rigoulay C, Chabelskaya S, Sharma CM, Marchais A, Skorski P et al (2010) Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res 38:6620–6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chabelskaya S, Gaillot O, Felden B (2010) A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune evasion molecule. PLoS Pathog 6:e1000927

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sayed N, Jousselin A, Felden B (2011) A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide. Nat Struct Mol Biol 19:105–112

    Article  PubMed  Google Scholar 

  10. Morrison JM, Miller EW, Benson MA, Alonzo FIII, Yoong P, Torres VJ et al (2012) Characterization of SSR42, a novel virulence factor regulatory RNA that contributes to the pathogenesis of a Staphylococcus aureus USA300 representative. J Bacteriol 194:2924–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eyraud A, Tattevin P, Chabelskaya S, Felden B (2014) A small RNA controls a protein regulator involved in antibiotic resistance in Staphylococcus aureus. Nucleic Acids Res 42:4892–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Romilly C, Lays C, Tomasini A, Caldelari I, Benito Y, Hammann P et al (2014) A noncoding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus. PLoS Pathog 10:e1003979

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xue T, Zhang X, Sun H, Sun B (2014) ArtR, a novel sRNA of Staphylococcus aureus, regulates α-toxin expression by targeting the 5′ UTR of sarT mRNA. Med Microbiol Immunol 203:1–12

    Article  CAS  PubMed  Google Scholar 

  14. Pinel-Marie ML, Brielle R, Felden B (2014) Dual toxic peptide coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep 7:424–435

    Article  CAS  PubMed  Google Scholar 

  15. Le Pabic H, Germain-Amiot N, Bordeau V, Felden B (2015) A bacterial regulatory RNA attenuates virulence, spread and human host cell phagocytosis. Nucleic Acids Res 43:9232–9248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blevins JS, Beenken KE, Elasri MO, Hurlburt BK, Smeltzer MS (2002) Strain dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect Immun 70:470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bohn C, Rigoulay C, Bouloc P (2007) No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A et al (2005) Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24:824–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duthie ES, Lorenz LL (1952) Staphylococcal coagulase: mode of action and antigenicity. J Gen Microbiol 6:95–107

    CAS  PubMed  Google Scholar 

  20. Pichon C, Felden B (2005) Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci USA 102:14249–14254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tjaden B (2008) TargetRNA: a tool for predicting targets of small RNA action in bacteria. Nucleic Acids Res 36:109–113

    Article  Google Scholar 

  23. Eggenhofer F, Tafer H, Stadler PF, Hofacker IL (2011) RNApredator: fast accessibility based prediction of sRNA targets. Nucleic Acids Res 39:W149–W154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, Hofacker IL (2006) Thermodynamics of RNA-RNA Binding. Bioinformatics 22:1177–1182

    Article  PubMed  Google Scholar 

  25. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ (2012) Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. mBio 3:e00277-11

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Lab Press, New York

    Google Scholar 

  28. Chomczynski P, Sacchi N (2006) The single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction: twenty something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  29. Zmantar T, Kouidhi B, Miladi H, Mahdouani K, Bakhrouf A (2010) A microtiter plate assay for Staphylococcus aureus biofilm quantification at various pH levels and hydrogen peroxide supplementation. New Microbiol 33:137–145

    CAS  PubMed  Google Scholar 

  30. Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenber J, Losick R (2011) Inhibitory effects of d-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 193:5616–5622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ravi MS, Vijay R, Kumari S, Panchasara C (2013) Cytotoxic and genotoxic effects of orthodontic adhesives on human lymphocyte—an in vitro study. Med Sci 2:820–829

    Google Scholar 

  32. Wiseman GM (1975) The hemolysins of Staphylococcus aureus. Bacteriol Rev 39:317–344

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kernodle DS, McGraw PA, Barg NL, Menzies BE, Voladri RK, Harshman S (1995) Growth of Staphylococcus aureus with nafcillin in vitro induces alpha-toxin production and increases the lethal activity of sterile broth filtrates in a murine model. J Infect Dis 172:410–419

    Article  CAS  PubMed  Google Scholar 

  34. Bayer AS, Ramos MD, Menzies BE, Yeaman MR, Shen AJ, Cheung AL (1997) Hyper production of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins. Infect Immun 65:4652–4660

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Gray L, Novick RP, Ji G (2002) Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcus aureus. J Biol Chem 277:34736–34742

    Article  CAS  PubMed  Google Scholar 

  36. Schmitz FJ, Veldkamp KE, Van Kessel KPM, Verhoef J, Van Strijp JA (1997) Delta toxin from Staphylococcus aureus as a costimulator of human neutrophil oxidative burst. J Infect Dis 176:1531–1537

    Article  CAS  PubMed  Google Scholar 

  37. Sakoulas G, Moellering RC Jr, Eliopoulos GM (2006) Adaptation of methicillin resistant Staphylococcus aureus in the face of vancomycin therapy. Clin Infect Dis 42:S40–S50

    Article  CAS  PubMed  Google Scholar 

  38. Morfeldt E, Taylor D, von Gabain A, Arvidson S (1995) Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14:4569–4577

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Den Reijer PM, Haisma EM, Lemmens-den Toom NA, Willemse J, Koning RA et al (2016) Detection of alpha-toxin and other virulence factors in biofilms of Staphylococcus aureus on polystyrene and a human epidermal model. PLoS ONE 24:e0152544

    Article  Google Scholar 

  40. Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM (2009) Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEBJ 23:3393–3404

    Article  CAS  Google Scholar 

  41. Wertheim HFL, Walsh E, Choudhurry R, Melles DC, Boelens HAM, Miajlovic H et al (2008) Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med 5:e17

    Article  PubMed  PubMed Central  Google Scholar 

  42. Iyer VR, Sharma R, Pathania R, Navani NK (2012) Small RNAs of pathogenic bacteria: not small enough to be overlooked for therapeutics. Mol Cell Pharmacol 4:17–30

    CAS  Google Scholar 

  43. Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandensch F (2000) Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA and identification of the RNA domain involved in repression of protein A expression. RNA 6:668–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms properties, regulation and roles in human disease. Virulence 2:445–459

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chambers JR, Sauer K (2013) Small RNAs and their role in biofilm formation. Trends Microbiol 21:39–41

    Article  CAS  PubMed  Google Scholar 

  46. Coelho LR, Souza RR, Ferreira FA, Guimaraes MA, Ferreira-Carvalho BT, Figueiredo AM (2008) agr RNAIII divergently regulates glucose-induced biofilm formation in clinical isolates of Staphylococcus aureus. Microbiology 154:3480–3490

    Article  CAS  PubMed  Google Scholar 

  47. Le KY, Otto M (2015) Quorum sensing regulation in staphylococci- an overview. Front Microbiol 6:1174

    Article  PubMed  PubMed Central  Google Scholar 

  48. Resch A, Rosenstein R, Nerz C, Gotz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71:2663–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abraham NM, Jefferson KK (2012) Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology 158:1504–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH et al (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lorenz U, Ohlsen K, Karch H, Hecker M, Thiede A, Hacker J (2000) Human antibody response during sepsis against targets expressed by methicillin resistant Staphylococcus aureus. FEMS Immunol Med Microbiol 29:145–153

    Article  CAS  PubMed  Google Scholar 

  52. Stapleton MR, Horsburgh MJ, Hayhurst EJ, Wright L, Jonsson IM, Tarkowski A et al (2007) Characterization of IsaA and SceD, two putative lytic transglycosylases of Staphylococcus aureus. J Bacteriol 189:7316–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Payne DE, Martin NR, Parzych KR, Rickard AH, Underwood A, Boles BR (2013) Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect Immun 81:496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sakata N, Terakubo S, Mukai T (2005) Subcellular location of the soluble lytic transglycosylase homologue in Staphylococcus aureus. Curr Microbiol 50:47–51

    Article  CAS  PubMed  Google Scholar 

  55. Nair D, Memmi G, Hernandez D, Bard J, Beaume M, Gill S et al (2011) Whole genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol 193:2332–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Professors Timothy Foster and Ian. R. Monk, Trinity College, Dublin, Abraham. L. Sonenshein, Tufts University, Boston, for providing shuttle plasmids, S. aureus and E. coli strains. The pCN40 vector was obtained through the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) program supported under NIAD, NIH Contract No. HHSN272200700055C. MK was supported by a research fellowship (F.4-1/2006(BSR)/7-128/2007) by University Grant Commission, Government of India. The initial phase of this work was partially funded by a grant from the Department of Biotechnology, India (BT/PR/P0056/AGR/36/29/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinalini Nair.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics statement

The study protocols for the experimental use of mice were carried out in strict accordance with and approved by Committee for the Purpose of Control and Supervision on Experiments on Animals (CPCSEA), Government of India (Approval number 938/PO/a/06/CPCSEA).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 678 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kathirvel, M., Buchad, H. & Nair, M. Enhancement of the pathogenicity of Staphylococcus aureus strain Newman by a small noncoding RNA SprX1. Med Microbiol Immunol 205, 563–574 (2016). https://doi.org/10.1007/s00430-016-0467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-016-0467-9

Keywords

Navigation