Skip to main content
Log in

GABAergic deficits in absence of LPA1 receptor, associated anxiety-like and coping behaviors, and amelioration by interneuron precursor transplants into the dorsal hippocampus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA1 has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA1 receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA1-null mice, lacking the LPA1 receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA1-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA1 receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA1-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA1 receptor. Transplant studies in maLPA1-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA1 receptor represents a potential target for interneuron-related neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Albrecht A, Redavide E, Regev-Tsur S, Stork O, Richter-Levin G (2021) Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neurosci Biobehav Rev 122:229–244

    Article  CAS  Google Scholar 

  • Álvarez-Dolado M, Broccoli V (2011) GABAergic neuronal precursor grafting: implications in brain regeneration and plasticity. Neural Plast 2011:384216

    Article  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Dolado M, Calcagnotto ME, Karkar KM, Southwell DG, Jones-Davis DM, Estrada RC, Rubenstein JLR, Alvarez-Buylla A, Baraban SC (2006) Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain. J Neurosci 26:7380–7389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anyan J, Amir S (2018) Too depressed to swim or too afraid to stop? A reinterpretation of the forced swim test as a measure of anxiety-like behavior. Neuropsychopharmacology 43:931–933

    Article  PubMed  Google Scholar 

  • Bannon AW, Seda J, Carmouche M, Francis JM, Norman MH, Karbon B, McCaleb ML (2000) Behavioral characterization of neuropeptide Y knockout mice. Brain Res 868:79–87

    Article  CAS  PubMed  Google Scholar 

  • Baraban SC, Southwell DG, Estrada RC, Jones DL, Sebe JY, Alfaro-Cervello C, García-Verdugo JM, Rubenstein JL, Alvarez-Buylla A (2009) Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc Natl Acad Sci USA 106:15472–15477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brambilla P, Perez J, Barale F, Schettini G, Soares JC (2003) GABAergic dysfunction in mood disorders. Mol Psychiatry 8:721–737

    Article  CAS  PubMed  Google Scholar 

  • Calcagnotto ME, Zipancic I, Piquer-Gil M, Mello LE, Alvarez-Dolado M (2010) Grafting of GABAergic precursors rescues deficits in hippocampal inhibition. Epilepsia 51(Suppl 3):66–70

    Article  CAS  PubMed  Google Scholar 

  • Castilla-Ortega E, Sánchez-Lopez J, Hoyo-Becerra C, Matas-Rico E, Zambrana-Infantes E, Chun J et al (2010) Exploratory anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiol Learn Mem 94:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodríguez De Fonseca F, Estivill-Torrús G, Santín LJ (2011) Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA1 receptor knockout mice. PLoS ONE 6(9):e25522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castilla-Ortega E, Pedraza C, Chun J, de Fonseca FR, Estivill-Torrus G, Santin LJ (2012) Hippocampal c-Fos activation in normal and LPA1-null mice after two object recognition tasks with different memory demands. Behav Brain Res 232:400–405

    Article  CAS  PubMed  Google Scholar 

  • Christiansen SH, Olesen MV, Gøtzsche CR, Woldbye DP (2014) Anxiolytic-like effects after vector-mediated overexpression of neuropeptide Y in the amygdala and hippocampus of mice. Neuropeptides 48:335–344

    Article  CAS  PubMed  Google Scholar 

  • Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA 97:13384–13389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238–245

    Article  CAS  PubMed  Google Scholar 

  • Cunningham MO, Hunt J, Middleton S, LeBeau FE, Gillies MJ, Davies CH, Maycox PR, Whittington MA, Racca C (2006) Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. J Neurosci 2:2767–2776

    Article  CAS  Google Scholar 

  • Cunningham MG, Connor CM, Carlezon WA Jr, Meloni E (2009) Amygdalar GABAergic-rich neural grafts attenuate anxiety-like behavior in rats. Behav Brain Res 205:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curlik DM, Maeng LY, Agarwal PR, Shors TJ (2013) Physical skill training increases the number of surviving new cells in the adult hippocampus. PLoS ONE 8:e55850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Cruz E, Zhao M, Guo L, Ma H, Anderson SA, Schwartz TH (2011) Interneuron progenitors attenuate the power of acute focal ictal discharges. Neurotherapeutics 8:763–773

    Article  PubMed  PubMed Central  Google Scholar 

  • De Felipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3:273–289

    Article  CAS  Google Scholar 

  • Desbonnet L, Waddington JL, Tuathaigh CM (2009) Mice mutant for genes associated with schizophrenia: common phenotype or distinct endophenotypes? Behav Brain Res 204:258–273

    Article  CAS  PubMed  Google Scholar 

  • Engin E, Stellbrink J, Treit D, Dickson CT (2008) Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience 157:666–676

    Article  CAS  PubMed  Google Scholar 

  • Estivill-Torrús G, Llebrez-Zayas P, Matas-Rico E, Santin L, Pedraza C, De Diego I, Del Arco I, Fernandez-Llebrez P, Chun J, De Fonseca FR (2008) Absence of LPA1 signaling results in defective cortical development. Cereb Cortex 18:938–950

    Article  PubMed  Google Scholar 

  • Estivill-Torrús G, Santín L, Pedraza C, Castilla-Ortega E, Rodríguez de Fonseca F (2013) Role of lysophosphatidic acid (LPA) in behavioral processes: implications for psychiatric disorders. In: Chun J, Hla T, Spiegel S, Moolenaar W (eds) Lysophospholipid receptors: signaling and biochemistry. Wiley, Hoboken, New Jersey, pp 451–474

    Chapter  Google Scholar 

  • García-Díaz B, Riquelme R, Varela-Nieto I, Jiménez AJ, de Diego I, Gómez-Conde AI, Matas-Rico E, Aguirre JÁ, Chun J, Pedraza C, Santín LJ, Fernández O, Rodríguez de Fonseca F, Estivill-Torrús G (2015) Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex. Brain Struct Funct 220:3701–3720

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Pradhan DA, Ming GL, Song H (2007) GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci 30:1–8

    Article  PubMed  CAS  Google Scholar 

  • Gilani AI, Chohan MO, Inan M, Schobel SA, Chaudhury NH, Paskewitz S, Chuhma N, Glickstein S, Merker RJ, Xu Q, Small SA, Anderson SA, Ross ME, Moore H (2014) Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition. Proc Natl Acad Sci USA 111:7450–7455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González de San Román E, Manuel I, Giralt MT, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Ferrer I, Rodríguez-Puertas R (2015) Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain. J Neurochem 134(3):471–485

    Article  CAS  Google Scholar 

  • Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, MØLler A, Nielsen K, Nyengaard JR, Pakkenberg B, SØRensen FB, Vesterby A, West MJ (1988) The new stereological tools: dissector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathol Microbiol Immunol Scand 96:857–881

    Article  CAS  Google Scholar 

  • Gupta J, Bromwich M, Radell J, Arshad MN, Gonzalez S, Luikart BW, Aaron GB, Naegele JR (2019) Restrained dendritic growth of adult-born granule cells innervated by transplanted fetal GABAergic interneurons in mice with temporal lobe epilepsy. eNeuro 6:2

    Article  Google Scholar 

  • Hadjantonakis AK, Gertsenstein M, Ikawa M, Okabe M, Nagy A (1988) Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech Dev 76:79–90

    Article  Google Scholar 

  • Harrison SM, Reavill C, Brown G, Brown JT, Cluderay JE, Crook B, Davies CH, Dawson LA, Grau E, Heidbreder C, Hemmati P, Hervieu G, Howarth A, Hughes ZA, Hunter AJ, Latcham J, Pickering S, Pugh P, Rogers DC, Shilliam CS, Maycox PR (2003) LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease. Mol Cell Neurosci 24:1170–1179

    Article  CAS  PubMed  Google Scholar 

  • Hattiangady B, Rao MS, Shetty AK (2008) Grafting of striatal precursor cells into hippocampus shortly after status epilepticus restrains chronic temporal lobe epilepsy. Exp Neurol 212:468–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht JH, Weiner JA, Post SR, Chun J (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 135:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Heilig M (2004) The NPY system in stress, anxiety and depression. Neuropeptides 38:213–224

    Article  CAS  PubMed  Google Scholar 

  • Hunt RF, Girskis KM, Rubenstein JL, Alvarez-Buylla A, Baraban SC (2013) GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat Neurosci 16:692–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, Gage FH, Song H, Lie DC (2009) GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 29:7966–7977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalueff AV, Nutt DJ (2007) Role of GABA in anxiety and depression. Depress Anxiety 24:495–517

    Article  CAS  PubMed  Google Scholar 

  • Karl T, Burne THJ, Herzog H (2006) Effect of Y1 receptor deficiency on motor activity, exploration, and anxiety. Behav Brain Res 167:87–93

    Article  CAS  PubMed  Google Scholar 

  • Karl T, Duffy L, Herzog H (2008) Behavioural profile of a new mouse model for NPY deficiency. Eur J Neurosci 28:173–180

    Article  PubMed  Google Scholar 

  • Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    Article  CAS  PubMed  Google Scholar 

  • Kheirbek MA, Hen R (2011) Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology 36:373–374

    Article  PubMed  Google Scholar 

  • Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, Zeng H, Fenton AA, Hen R (2013) Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77:955–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Yoon BE (2017) Altered GABAergic Signaling in Brain Disease at Various Stages of Life. Exp Neurobiol 26:122–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin EJ, Lin S, Aljanova A, During MJ, Herzog H (2010) Adult-onset hippocampal-specific neuropeptide Y overexpression confers mild anxiolytic effect in mice. Eur Neuropsychopharmacol 20:164–175

    Article  CAS  PubMed  Google Scholar 

  • Liu YQ, Yu F, Liu WH, He XH, Peng BW (2014) Dysfunction of hippocampal interneurons in epilepsy. Neurosci Bull 30:985–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorens-Martín M, Tejeda GS, Trejo JL (2011) Antidepressant and proneurogenic influence of environmental enrichment in mice: protective effects vs recovery. Neuropsychopharmacology 36:2460–2468

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo AH, Tahsili-Fahadan P, Wise RA, Lupica CR, Aston-Jones G (2011) Linking context with reward: a functional circuit from hippocampal CA3 to ventral tegmental area. Science 333:353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383–406

    Article  CAS  PubMed  Google Scholar 

  • Malleret G, Hen R, Guillou JL, Segu L, Buhot MC (1999) 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. J Neurosci 19:6157–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Losa M, Tracy TE, Ma K, Verret L, Clemente-Perez A, Khan AS, Cobos I, Ho K, Gan L, Mucke L, Alvarez-Dolado M, Palop JJ (2018) Nav1.1-Overexpressing interneuron transplants restore brain rhythms and cognition in a mouse model of Alzheimer’s disease. Neuron 98:75-89.e5. https://doi.org/10.1016/j.neuron.2018.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matas-Rico E, García-Diaz B, Llebrez-Zayas P, López-Barroso D, Santín L, Pedraza C, Smith-Fernandez A, Fernandez-Llebrez P, Tellez T, Redondo M, Chun J, De Fonseca FR, Estivill-Torrus G (2008) Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 39:342–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirendil H, Thomas EA, De Loera C, Okada K, Inomata Y, Chun J (2015) LPA signaling initiates schizophrenia-like brain and behavioral changes in a mouse model of prenatal brain hemorrhage. Transl Psychiatry 5:e541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata S, Kumagaya R, Kakizaki T, Fujihara K, Wakamatsu K, Yanagawa Y (2019) Loss of glutamate decarboxylase 67 in somatostatin-expressing neurons leads to anxiety-like behavior and alteration in the Akt/GSK3β signaling pathway. Front Behav Neurosci 13:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möhler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacol 62:42–53

    Article  CAS  Google Scholar 

  • Molendijk ML, de Kloet ER (2019) Coping with the forced swim stressor: current state-of-the-art. Behav Brain Res 364:1–10

    Article  PubMed  Google Scholar 

  • Moreno-Fernández RD, Pérez-Martín M, Castilla-Ortega E, Rosell Del Valle C, García-Fernández MI, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Pedraza C (2017) maLPA1-null mice as an endophenotype of anxious depression. Transl Psychiatry 7:e1077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreno-Fernández RD, Nieto-Quero A, Gómez-Salas FJ, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Pérez-Martín M, Pedraza C (2018) Effects of genetic deletion versus pharmacological blockade of the LPA(1) receptor on depression-like behaviour and related brain functional activity. Dis Model Mech 11:dmm035519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mul JD, Zheng J, Goodyear LJ (2016) Validity assessment of 5 day repeated forced-swim stress to model human depression in young-adult C57BL/6J and BALB/cJ mice. eNeuro 3(6):ENEURO.0201-16.2016. https://doi.org/10.1523/ENEURO.0201-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Musazzi L, Di Daniel E, Maycox P, Racagni G, Popoli M (2010) Abnormalities in alpha/beta-CaMKII and related mechanisms suggest synaptic dysfunction in hippocampus of LPA1 receptor knockout mice. Int J Neuropsychopharmacol 14:941–953

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB (2003) The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull 37:133–146

    PubMed  Google Scholar 

  • Ortiz JB, Newbern J, Conrad CD (2020) Chronic stress has different immediate and delayed effects on hippocampal calretinin- and somatostatin-positive cells. Hippocampus. https://doi.org/10.1002/hipo.23285 (Online ahead of print)

    Article  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pedraza C, Sánchez-López J, Castilla-Ortega E, Rosell-Valle C, Zambrana-Infantes E, García-Fernández M, Rodríguez de Fonseca F, Chun J, Santín LJ, Estivill-Torrús G (2014) Fear extinction and acute stress reactivity reveal a role of LPA(1) receptor in regulating emotional-like behaviors. Brain Struct Funct 219:1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Peñalver A, Campos-Sandoval JA, Blanco E, Cardona C, Castilla L, Martín-Rufián M, Estivill-Torrús G, Sánchez-Varo R, Alonso FJ, Pérez-Hernández M, Colado MI, Gutiérrez A, de Fonseca FR, Márquez J (2017) Glutaminase and MMP-9 downregulation in cortex and hippocampus of LPA1 receptor null mice correlate with altered dendritic spine plasticity. Front Mol Neurosci 10:278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez SM, Lodge DJ (2013) Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia. Mol Psychiatry 18:1193–1198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prévôt TD, Gastambide F, Viollet C, Henkous N, Martel G, Epelbaum J, Béracochéa D, Guillou JL (2017) Roles of hippocampal somatostatin receptor subtypes in stress response and emotionality. Neuropsychopharmacology 42:1647–1656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Redrobe JP, Dumont Y, Fournier A, Quirion R (2002) The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 26:615–624

    Article  CAS  PubMed  Google Scholar 

  • Redrobe JP, Dumont Y, Fournier A, Baker GB, Quirion R (2005) Role of serotonin (5-HT) in the antidepressant-like properties of neuropeptide Y (NPY) in the mouse forced swim test. Peptides 26:1394–1400

    Article  CAS  PubMed  Google Scholar 

  • Regev-Tsur S, Demiray YE, Tripathi K, Stork O, Richter-Levin G, Albrecht A (2020) Region-specific involvement of interneuron subpopulations in trauma-related pathology and resilience. Neurobiol Dis 143:104974

    Article  CAS  PubMed  Google Scholar 

  • Roberts C, Winter P, Shilliam CS, Hughes ZA, Langmead C, Maycox PR, Dawson LA (2005) Neurochemical changes in LPA1 receptor deficient mice—a putative model of schizophrenia. Neurochem Res 30:371–377

    Article  CAS  PubMed  Google Scholar 

  • Sabban EL, Alaluf LG, Serova LI (2016) Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides 56:19–24

    Google Scholar 

  • Santin LJ, Bilbao A, Pedraza C, Matas-Rico E, López-Barroso D, Castilla-Ortega E, Sánchez-López J, Riquelme R, Varela-Nieto I, de la Villa P, Suardíaz M, Chun J, Rodriguez De Fonseca F, Estivill-Torrús G (2009) Behavioral phenotype of maLPA -null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain Behav 8(8):772–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen Q, Fuchs T, Sahir N, Luscher B (2012) GABAergic control of critical developmental periods for anxiety- and depression-related behavior in mice. PLoS ONE 7:e47441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibbe M, Kulik A (2017) GABAergic regulation of adult hippocampal neurogenesis. Mol Neurobiol 54:5497–5510

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Rudolph U (2012) Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA(A) receptor subtypes. Neuropharmacol 62:54–62

    Article  CAS  Google Scholar 

  • Song J, Christian KM, Ming GL, Song H (2012) Life or death: developing cortical interneurons make their own decision. EMBO J 31:4373–4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Southwell DG, Froemke RC, Alvarez-Buylla A, Stryker MP, Gandhi SP (2010) Cortical plasticity induced by inhibitory neuron transplantation. Science 327:1145–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164

    Article  CAS  PubMed  Google Scholar 

  • Tasan RO, Verma D, Wood J, Lach G, Hörmer B, de Lima TC, Herzog H, Sperk G (2016) The role of Neuropeptide Y in fear conditioning and extinction. Neuropeptides 55:111–126

    Article  CAS  PubMed  Google Scholar 

  • Thompson RF (1986) The neurobiology of learning and memory. Science 233:941–947

    Article  CAS  PubMed  Google Scholar 

  • Thorsell A, Mathé AA (2017) Neuropeptide Y in alcohol addiction and affective disorders. Front Endocrinol 8:178

    Article  Google Scholar 

  • Trevelyan AJ, Schevon CA (2013) How inhibition influences seizure propagation. Neuropharmacology 69:45–54

    Article  CAS  PubMed  Google Scholar 

  • Valente MF, Romariz S, Calcagnotto ME, Ruiz L, Mello LE, Frussa-Filho R, Longo BM (2013) Postnatal transplantation of interneuronal precursor cells decreases anxiety-like behavior in adult mice. Cell Transplant 22:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider I, Smith KS, Keist R, Rudolph U (2011) Antidepressant-like properties of α2-containing GABA(A) receptors. Behav Brain Res 217:77–80

    Article  CAS  PubMed  Google Scholar 

  • Walker TL, Overall RW, Vogler S, Sykes AM, Ruhwald S, Lasse D, Ichwan M, Fabel K, Kempermann G (2016) Lysophosphatidic acid receptor is a functional marker of adult hippocampal precursor cells. Stem Cell Rep 6:552–565

    Article  CAS  Google Scholar 

  • Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol 213:1–47

    Article  CAS  PubMed  Google Scholar 

  • Weiner JA, Hecht JH, Chun J (1998) Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp Neurol 398:587–598

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci 2:461–466

    Article  CAS  PubMed  Google Scholar 

  • Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nature Rev Neurosci 7:687–696

    Article  CAS  Google Scholar 

  • Yamada M, Tsukagoshi M, Hashimoto T, Oka J, Saitoh A, Yamada M (2015) Lysophosphatidic acid induces anxiety-like behavior via its receptors in mice. J Neural Transm 122:487–494

    Article  CAS  PubMed  Google Scholar 

  • Yung YC, Stoddard NC, Mirendil H, Chun J (2015) Lysophosphatidic Acid signaling in the nervous system. Neuron 5:669–682

    Article  CAS  Google Scholar 

  • Zipancic I, Calcagnotto ME, Piquer-Gil M, Mello LE, Alvarez-Dolado M (2010) Transplant of GABAergic precursors restores hippocampal inhibitory function in a mouse model of seizure susceptibility. Cell Transplant 19:549–564

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge IBIMA joint support structures for research (ECAI). Likewise, we are obliged to the staff of the animal housing and central research facilities at Universidad de Málaga and CABIMER. Finally, we appreciate the services from American Journal Experts (Durham, NC, USA) for English Language Editing.

Funding

This work was supported by grants from the Spanish Ministry of Science, Innovation and Universities, co-funded by the European Regional Development Fund (ERDF, EU), (PSI2017-82604R, to LJS; PSI2017-83408-P to CP; SAF09-07746, to MAD; PI16/01510, to GET) and Andalusian Regional Ministries of Economy, Knowledge, Business and University (SEJ-4515 -to LJS; SEJ1863 to CP) and of Health and Families (Nicolas Monardes Programme to GET).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CRV, MML, EMR, GET, LJS, and MAD; Methodology, CRV, MML; EMR, ECO, LSS, DLGM, AIGC, EZI, and CP; Investigation, interpretation, CRV, MML, EZI, CP, JC and MAD; Project Administration, LJS, MAD and GET.; Supervision, LJS, MAD and GET; Funding Acquisition and Resources, MAD, LJS, FRF, PJSC; Writing-Original Draft, CRV and GET.

Corresponding author

Correspondence to Guillermo Estivill-Torrús.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethics approval

Experiments were conducted in accordance with the European guidelines, according to the Directives of the Council of the European Community 2010/63/EU, 90/219/EEC, and Regulation (EC)nº1946/2003, and to the national laws on laboratory animal welfare (Royal Decrees 53/2013 and 178/2004, Laws 32/2007 and 9/2003 and regional Decree 320/2010), and approved by the Experimentation Ethics Committees of the University of Malaga and CABIMER.

Consent for publication

All authors have directly participated in the planning, execution, or analysis of this study and approved the contents of the manuscript and its submission by the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Supplementary file2 (DOCX 6212 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosell-Valle, C., Martínez-Losa, M., Matas-Rico, E. et al. GABAergic deficits in absence of LPA1 receptor, associated anxiety-like and coping behaviors, and amelioration by interneuron precursor transplants into the dorsal hippocampus. Brain Struct Funct 226, 1479–1495 (2021). https://doi.org/10.1007/s00429-021-02261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02261-4

Keywords

Navigation