Skip to main content
Log in

Methylphenidate decreases the EEG mu power in the right primary motor cortex in healthy adults during motor imagery and execution

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

This study investigated the effects of dopaminergic drugs on the EEG mu power during motor imagery, action observation, and execution. This is a double-blind, crossover study with a sample of 15 healthy adults under placebo vs. methylphenidate vs. risperidone conditions during motor imagery, action observation, and execution tasks. The participants had drug dosage adjustment based on body weight/dose (mg/kg). We also analyzed the mu band power by electroencephalography during the study steps. The main result is the interaction between the condition and task factors for the C3 and C4 electrodes, with decreasing EEG mu power in the methylphenidate when compared to risperidone (p ≤ 0.0083). Our results can indicate that the methylphenidate decreases the neurophysiological activity in the central cortical regions during the perceptual experience of tasks with or without body movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbruzzese G, Avanzino L, Marchese R (2015) Pelosin E. Innovative Cognitive Tools in the Rehabilitation of Parkinson’s Disease. Parkinsons Dis, Action Observation and Motor Imagery, p 124214

    Google Scholar 

  • Abou El-Magd RM, Park HK, Kawazoe T, Iwana S, Ono K, Chung SP, Miyano M, Yorita K, Sakai T, Fukui K (2010) The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia. J Psy-chopharmacol 24(7):1055–1067

    CAS  Google Scholar 

  • Acton G, Broom C (1989) A dose rising study of the safety and effects on serum prolactin of SK and F 101468, a novel dopamine D2 receptor agonist. Br J Clin Pharmacol 28:435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari BM, Goshorn ES, Lamichhane B, Dhamala M (2013) Temporal-order judgment of audiovisual events involves network activity between parietal and prefrontal cortices. Brain Connect 3(5):536–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Aprigio D, Tanaka GK, Bittencourt J, Gongora M, Teixeira S, Cagy M, Budde H, Orsini M, Ribeiro P, Velasques B (2020) Dopaminergic drugs alter beta coherence during motor imagery and motor execution in healthy adults. Arq Neuropsiquiatr 78(4):199–205

    Article  PubMed  Google Scholar 

  • Balconi M, Cobelli C (2015) rTMS on left prefrontal cortex contributes to memories for positive emotional cues: a comparison between pictures and words. Neuroscience 26(287):93–103

    Article  Google Scholar 

  • Bastos VH et al (2005) Medidas eletrencefalográficas durante a aprendizagem de tarefa motora sob efeito do bromazepam. Arq Neuropsiquiatr 63.2-B:443–451

    Article  Google Scholar 

  • Bernier R, Aaronson B, McPartland J (2013) The role of imitation in the observed heterogeneity in EEG mu rhythm in autism and typical development. Brain Cogn 82(1):69–75

    Article  PubMed  Google Scholar 

  • Beuter A, Hernández R, Rigal R, Modolo J, Blanchet PJ (2008) Postural sway and effect of levodopa in early Parkinson’s disease. Can J Neurol Sci 35(1):65–68

    Article  PubMed  Google Scholar 

  • Braadbaart L, Williams JH, Waiter GD (2013) Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol 89(1):99–105

    Article  PubMed  Google Scholar 

  • Cannon EN, Yoo KH, Vanderwert RE, Ferrari PF, Woodward AL, Fox NA (2014) Action experience, more than observation, influences mu rhythm desynchronization. PLoS ONE 9(3):e92002

    Article  PubMed  PubMed Central  Google Scholar 

  • Debarnot U, Clerget E, Olivier E (2011) Role of the primary motor cortex in the early boost in performance following mental imagery training. PLoS ONE 6(10):e26717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devilbiss DM, Berridge CW (2008) Cognition-enhancing doses of methylphenidate preferentially increase prefrontal cortex neuronal responsiveness. Biol Psychiatry 64(7):626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickstein R, Deutsch JE (2007) Motor imagery in physical therapist practice. Phys Ther 87(7):942–953

    Article  PubMed  Google Scholar 

  • Ehrlichman H, Barrett J (1983) Right hemispheric specialization for mental imagery: a review of the evidence. Brain Cogn 2(1):55–76

    Article  CAS  PubMed  Google Scholar 

  • Farias TL, Marinho V, Carvalho V, Rocha K, da Silva P, Silva F, Teles AS, Gupta D, Ribeiro P, Velasques B, Cagy M, Bastos VH, Silva-Junior F, Teixeira S (2019) Methylphenidate modifies activity in the prefrontal and parietal cortex accelerating the time judgment. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 40(4):829–837

    Google Scholar 

  • Fayers PM, Machin D (1995) Sample size: how many patients are necessary? Br J Cancer 72:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayyazi A, Salari E, Khajeh A, Gajarpour A (2014) A comparison of risperidone and buspirone for treatment of behavior disorders in children with phenylketonuria. Iran J Child Neurol 8(4):33–38 (Fall)

    PubMed  PubMed Central  Google Scholar 

  • Gualberto CJ (2002) The effects of imagery perspective as a function of skill level on alpha activity. Int J Psychophysiol 43(3):261–271

    Article  Google Scholar 

  • Hayashi MJ, Kantele M, Walsh V, Carlson S, Kanai R (2014) Dissociable neuroanatomical correlates of subsecond and suprasecond time perception. J Cogn Neurosci 26(8):1685–1693

    Article  PubMed  Google Scholar 

  • Hobson HM, Bishop DVM (2016) Mu suppression: a good measure of the human mirror neuron system? Cortex 82:290–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobson HM, Bishop DV (2017) The interpretation of mu suppression as an index of mirror neuron activity: past, present and future. R Soc Open Sci 4(3):160662

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobi-Polishook T, Shorer Z, Melzer I (2009) The effect of methylphenidate on postural stability under single and dual task conditions in children with attention deficit hyperactivity disorder: a double blind randomized control trial. J Neurol Sci 280(1–2):15–21

    Article  CAS  PubMed  Google Scholar 

  • Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14(1 Pt 2):S103–S109

    Article  CAS  PubMed  Google Scholar 

  • Kratz O, Diruf MS, Studer P, Gierow W, Buchmann J, Moll GH, Heinrich H (2009) Effects of methylphenidate on motor system excitability in a response inhibition task. Behav Brain Funct 27(5):12

    Article  Google Scholar 

  • Linssen AM, Vuurman EF, Sambeth A, Riedel WJ (2012) Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers. Psychopharmacology 221(4):611–619

    Article  CAS  PubMed  Google Scholar 

  • Llanos C, Rodriguez M, Rodriguez-Sabate C, Morales I, Sabate M (2013) Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia 51(6):1019–1026

    Article  PubMed  Google Scholar 

  • Lorey B, Naumann T, Pilgramm S, Petermann C, Bischoff M, Zentgraf K, Stark R, Vaitl D, Munzert J (2013) How equivalent are the action execution, imagery, and observation of intransitive movements? Revisiting the concept of somatotopy during action simulation. Brain Cogn 81(1):139–150

    Article  PubMed  Google Scholar 

  • Lotze M, Cohen LG (2006) Volition and imagery in neurorehabilitation. Cogn Behav Neurol 19(3):135–140

    Article  PubMed  Google Scholar 

  • Lotze M, Halsband U (2006) Motor imagery. J Physiol Paris 99(4–6):386–395

    Article  PubMed  Google Scholar 

  • Malouin F, Richards CL (2010) Mental practice for relearning locomotor skills. Phys Ther 90(2):240–251

    Article  PubMed  Google Scholar 

  • Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S (2018) The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 128(3):262–282

    Article  CAS  PubMed  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20(6):RC65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuhara H (2012) Cortical dynamics of human scalp EEG origins in a visually guided motor execution. Neuroimage 62(3):1884–1895

    Article  PubMed  Google Scholar 

  • Monte-Silva K, Kuo MF, Thirugnanasambandam N, Liebetanz D, Paulus W, Nitsche MA (2009) Dose-dependent inverted U-shaped effect of dopamine (D2-Like) receptor activation on focal and nonfocal plasticity in humans. J Neurosci 29:6124–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder T (2007) Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm (Vienna) 114(10):1265–1278

    Article  Google Scholar 

  • Newcorn JH, Nagy P, Childress AC, Frick G, Yan B, Pliszka S (2017) Randomized, double-blind, placebo-controlled acute comparator trials of lisdexamfetamine and extended-release methylphenidate in adolescents with attention-deficit/hyperactivity disorder. CNS Drugs 31(11):999–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  Google Scholar 

  • Paes F, Machado S, Arias-Carrión O, Domingues CA, Teixeira S, Velasques B, Cunha M, Minc D, Basile LF, Budde H, Cagy M, Piedade R, Kerick S, Menéndez-González M, Skaper SD, Norwood BA, Ribeiro P, Nardi AE (2011) Effects of Methylphenidate on performance of a practical pistol shooting task: a quantitative electroencephalography (qEEG) study. Int Arch Med 4(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiser M, Büsch D, Munzert J (2011) Strength gains by motor imagery with different ratios of physical to mental practice. Front Psychol 19(2):194

    Google Scholar 

  • Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30(4):1168–1187

    Article  PubMed  Google Scholar 

  • Rüther NN, Brown EC, Klepp A, Bellebaum C (2014) Observed manipulation of novel tools leads to mu rhythm suppression over sensory-motor cortices. Behav Brain Res 261:328–335

    Article  PubMed  Google Scholar 

  • Serrien DJ, Spapé MM (2009) Effects of task complexity and sensory conflict on goal-directed movement. Neurosci Lett 464(1):10–13

    Article  CAS  PubMed  Google Scholar 

  • Stecklow MV, Infantosi AF, Cagy M (2010) EEG changes during sequences of visual and kinesthetic motor imagery. Arq Neuropsiquiatr 68(4):556–561

    Article  PubMed  Google Scholar 

  • Stray LL, Ellertsen B, Stray T (2010) Motor function and methylphenidate effect in children with attention deficit hyperactivity disorder. Acta Paediatr 99(8):1199–1204

    Article  CAS  PubMed  Google Scholar 

  • Szameitat AJ, McNamara A, Shen S, Sterr A (2012) Neural activation and functional connectivity during motor imagery of bimanual everyday actions. PLoS ONE 7(6):e38506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa ER, Pineda JA (2007) Recognition of point-light biological motion: mu rhythms and mirror neuron activity. Behav Brain Res 183(2):188–194

    Article  PubMed  Google Scholar 

  • Vanderwert RE, Fox NA, Ferrari PF (2013) The mirror mechanism and mu rhythm in social development. Neurosci Lett 540:15–20

    Article  CAS  PubMed  Google Scholar 

  • Yarossi M, Manuweera T, Adamovich SV, Tunik E (2017) The effects of mirror feedback during target directed movements on ipsilateral corticospinal excitability. Front Hum Neurosci 11(11):242

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi W, Qiu S, Qi H, Zhang L, Wan B, Ming D (2013) EEG feature comparison and classification of simple and compound limb motor imagery. J Neuroeng Rehabil 12(10):106

    Article  Google Scholar 

  • Yi W, Qiu S, Wang K, Qi H, Zhang L, Zhou P, He F, Ming D (2014) Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery. PLoS ONE 9(12):e114853

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin S, Liu Y, Ding M (2016) Amplitude of sensorimotor mu rhythm is correlated with BOLD from multiple brain regions: a simultaneous EEG-fMRI study. Front Hum Neurosci 10:364

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Zil-English and Carla Ayres for the manuscript review.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: DA, JB, VM, MG, PR, and BV. Performed the experiments: DA, JB, MG, and BV. Analyzed the data: DA, VM, and BV. Contributed reagents/materials/analysis tools: VHB, VM, ST, MC, HB, PR, LFB, and BV. Wrote the paper: DA, VM, PR, and BV. Headed the analysis: DA, VM, PR, and BV.

Corresponding author

Correspondence to Victor Marinho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures performed in this study involving human participants were approved by the institutional and/or national research committee's ethical standards and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 425 KB)

Supplementary file2 (XLSX 461 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aprigio, D., Bittencourt, J., Gongora, M. et al. Methylphenidate decreases the EEG mu power in the right primary motor cortex in healthy adults during motor imagery and execution. Brain Struct Funct 226, 1185–1193 (2021). https://doi.org/10.1007/s00429-021-02233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02233-8

Keywords

Navigation