Skip to main content

Advertisement

Log in

Thyrotropin-releasing hormone axonal varicosities appear to innervate dopaminergic neurons in the human hypothalamus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Thyrotropin-releasing hormone (TRH) has a critical role in the central regulation of thyroid-stimulating hormone (TSH) from the anterior pituitary, and subsequently, thyroid hormone secretion from the thyroid gland. In addition to its role in the regulation of HPT axis, TRH is a potent regulator of prolactin (PRL) secretion by stimulating PRL secretion either directly from lactotrophs or indirectly via its action on the tuberoinfundibular dopamine (TIDA) neurons. In rodents, the TRH neurons which regulate TSH and thyroid hormone secretion, called hypophysiotropic TRH neurons, are in the medial subdivision of the parvicellular paraventricular nucleus (PVN). In humans, the PVN also contains a large population of TRH neurons, especially in its medial part, but the location of hypophysiotropic TRH neurons is not yet known. In addition to regulating TSH and PRL secretion, TRH also functions as a neurotransmitter/neuromodulator. In rodents and teleosts, TRH axons densely innervate TIDA neurons to inhibit tyrosine hydroxylase (TH) biosynthesis, neuronal firing, and dopamine turnover which may contribute to increasing PRL secretion. No such connections have been reported in humans, although dopaminergic neurons express TRH receptors and TRH also regulates PRL secretion. The objectives of this study were to map TRH-IR and TH-IR structures in the human hypothalamus with single-label light microscopic immunocytochemistry and study their interaction with double-label light microscopic immunocytochemistry. We show that TRH-IR nerve terminals densely surround TH-IR neurons (perikarya and dendrites) in the infundibulum of the human hypothalamus. The micrographs illustrating these juxtapositions were taken by Olympus BX45 microscope equipped with a digital camera and with 100X oil immersion objective. Composite images were created from the consecutive micrographs if the neurons were larger than the frame of the camera, using Adobe Photoshop software. As no gaps between TRH-IR and TH-IR elements were seen, these contacts may be functional synapses by which TRH regulates the activity of dopaminergic neurons and subsequently TSH and PRL secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albanese A, Altavista MC, Rossi P (1986) Organization of central nervous system dopaminergic pathways. J Neural Transm Suppl 22:3–17

    CAS  PubMed  Google Scholar 

  • Ansari MS, Almalki MH (2016) Primary hypothyroidism with markedly high prolactin. Front Endocrinol (Lausanne) 7:35

    Google Scholar 

  • Bjorklund A, Nobin A (1973) Fluorescence histochemical and microspectrofluorometric mapping of dopamine and noradrenaline cell groups in the rat diencephalon. Brain Res 51:193–205

    CAS  PubMed  Google Scholar 

  • Boler J, Enzmann F, Folkers K, Bowers CY, Schally AV (1969) The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun 37:705–710

    CAS  PubMed  Google Scholar 

  • Burgus R, Dunn TF, Desiderio D, Guillemin R (1969) Molecular structure of the hypothalamic hypophysiotropic TRF factor of ovine origin: mass spectrometry demonstration of the PCA-His-Pro-NH2 sequence. C R Acad Hebd Seances Acad Sci D 269:1870–1873

    CAS  PubMed  Google Scholar 

  • Dudas B (2013) Anatomy of the human hypothalamus, the human hypothalamus: anatomy, functions and disorders, edited by B. Nova Scientific Publishers, Dudas

    Google Scholar 

  • Dudas B, Baker M, Rotoli G, Grignol G, Bohn MC, Merchenthaler I (2010) Distribution and morphology of the catecholaminergic neural elements in the human hypothalamus. Neuroscience 171:187–195

    CAS  PubMed  Google Scholar 

  • Dudas B, Merchenthaler I (2001) Catecholaminergic axons innervate LH-releasing hormone immunoreactive neurons of the human diencephalon. J Clin Endocrinol Metab 86:5620–5626

    CAS  PubMed  Google Scholar 

  • Dudas B, Merchenthaler I (2006) Three-dimensional representation of the neurotransmitter systems of the human hypothalamus: inputs of the gonadotrophin hormone-releasing hormone neuronal system. J Neuroendocrinol 18:79–95

    CAS  PubMed  Google Scholar 

  • Erlanger BF, Borek F, Beiser SM, Lieberman S (1957) Steroid-protein conjugates. I. Preparation and characterization of conjugates of bovine serum albumin with testosterone and with cortisone. J Biol Chem 228:713–727

    CAS  PubMed  Google Scholar 

  • Felten DL (1976) Catecholamine neurons in the squirrel monkey hypothalamus. J Neural Transm 39:269–280

    CAS  PubMed  Google Scholar 

  • Felten DL, Laties AM, Carpenter MB (1974) Monoamine-containing cell bodies in the squirrel monkey brain. Am J Anat 139:153–165

    CAS  PubMed  Google Scholar 

  • Felten DL, Sladek JR Jr (1983) Monoamine distribution in primate brain V. Monoaminergic nuclei: anatomy, pathways and local organization. Brain Res Bull 10:171–284

    CAS  PubMed  Google Scholar 

  • Fliers E, Noppen NW, Wiersinga WM, Visser TJ, Swaab DF (1994) Distribution of thyrotropin-releasing hormone (TRH)-containing cells and fibers in the human hypothalamus. J Comp Neurol 350:311–323

    CAS  PubMed  Google Scholar 

  • Foster GA, Hokfelt T, Coyle JT, Goldstein M (1985) Immunohistochemical evidence for phenylethanolamine-N-methyltransferase-positive/tyrosine hydroxylase-negative neurones in the retina and the posterior hypothalamus of the rat. Brain Res 330:183–188

    CAS  PubMed  Google Scholar 

  • Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80:1523–1631

    CAS  PubMed  Google Scholar 

  • Frohlich E, Wahl R (2019) The forgotten effects of thyrotropin-releasing hormone:metabolic functions and medical applications. Front Neuroendocrinol 52:29–43

    PubMed  Google Scholar 

  • Galas L, Raoult E, Tonon MC, Okada R, Jenks BG, Castano JP, Kikuyama S, Malagon M, Roubos EW, Vaudry H (2009) TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol 164:40–50

    CAS  PubMed  Google Scholar 

  • Gallyas F, Gorcs T, Merchenthaler I (1982) High-grade intensification of the end-product of the diaminobenzidine reaction for peroxidase histochemistry. J Histochem Cytochem 30:183–184

    CAS  PubMed  Google Scholar 

  • Gallyas F, Merchenthaler I (1988) Copper-H2O2 oxidation strikingly improves silver intensification of the nickel-diaminobenzidine (Ni-DAB) end-product of the peroxidase reaction. J Histochem Cytochem 36:807–810

    CAS  PubMed  Google Scholar 

  • Goldstein J, Perello M, Nillni EA (2007) PreproThyrotropin-releasing hormone 178–199 affects tyrosine hydroxylase biosynthesis in hypothalamic neurons: a possible role for pituitary prolactin regulation. J Mol Neurosci 31:69–82

    CAS  PubMed  Google Scholar 

  • Grattan DR (2015) 60 years of neuroendocrinology: the hypothalamo-prolactin axis. J Endocrinol 226:T101–T122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hokfelt T, Fuxe K, Johansson O, Jeffcoate S, White N (1975a) Distribution of thyrotropin-releasing hormone (TRH) in the central nervous system as revealed with immunohistochemistry. Eur J Pharmacol 34:389–392

    CAS  PubMed  Google Scholar 

  • Hokfelt T, Fuxe K, Johansson O, Jeffcoate S, White N (1975b) Thyrotropin releasing hormone (TRH)-containing nerve terminals in certain brain stem nuclei and in the spinal cord. Neurosci Lett 1:133–139

    CAS  PubMed  Google Scholar 

  • Hokfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptidergic neurones. Nature 284:515–521

    CAS  PubMed  Google Scholar 

  • Honbo KS, van Herle AJ, Kellett KA (1978) Serum prolactin levels in untreated primary hypothyroidism. Am J Med 64:782–787

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Taniguchi Y, Inoue K, Kurosumi K, Suzuki M (1988) Immunocytochemical delineation of thyrotrophic area: origin of thyrotropin-releasing hormone in the median eminence. Neuroendocrinology 47:384–388

    CAS  PubMed  Google Scholar 

  • Jackson IM (1980) TRH in the rat nervous system: identity with synthetic TRH on high performance liquid chromatography following affinity chromatography. Brain Res 201:245–248

    CAS  PubMed  Google Scholar 

  • Jackson IM, Reichlin S (1974) Thyrotropin-releasing hormone (TRH): distribution in hypothalamic and extrahypothalamic brain tissues of mammalian and submammalian chordates. Endocrinology 95:854–862

    CAS  PubMed  Google Scholar 

  • Jacobs LS, Snyder PJ, Wilber JF, Utiger RD, Daughaday WH (1971) Increased serum prolactin after administration of synthetic thyrotropin releasing hormone (TRH) in man. J Clin Endocrinol Metab 33:996–998

    CAS  PubMed  Google Scholar 

  • Jokic D, Wang X (2011) Primary hypothyroidism associated with hyperprolactinemia and pituitary macroadenoma. Thyroid Sci 6:1–4

    Google Scholar 

  • Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL (2015) 60 YEARS OF NEUROENDOCRINOLOGY: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol 227:X3

    CAS  PubMed  Google Scholar 

  • Kadar A, Sanchez E, Wittmann G, Singru PS, Fuzesi T, Marsili A, Larsen PR, Liposits Z, Lechan RM, Fekete C (2010) Distribution of hypophysiotropic thyrotropin-releasing hormone (TRH)-synthesizing neurons in the hypothalamic paraventricular nucleus of the mouse. J Comp Neurol 518:3948–3961

    PubMed  PubMed Central  Google Scholar 

  • Kawano H, Tsuruo Y, Bando H, Daikoku S (1991) Hypophysiotropic TRH-producing neurons identified by combining immunohistochemistry for pro-TRH and retrograde tracing. J Comp Neurol 307:531–538

    CAS  PubMed  Google Scholar 

  • Koller KJ, Wolff RS, Warden MK, Zoeller RT (1987) Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus. Proc Natl Acad Sci U S A 84:7329–7333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubek MJ, Lorincz MA, Wilber JF (1977) The identification of thyrotropin releasing hormone (TRH) in hypothalamic and extrahypothalamic loci of the human nervous system. Brain Res 126:196–200

    CAS  PubMed  Google Scholar 

  • Landgraf R, Neumann ID (2004) Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol 25:150–176

    CAS  PubMed  Google Scholar 

  • Lechan RM, Fekete C (2006) The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res 153:209–235

    CAS  PubMed  Google Scholar 

  • Lechan RM, Hollenberg A, Fekete C (2009) Hypothalamic-pituitarythyroid axis: organization, neural/endocrine control of TRH. In: Squire LR (ed) Encyclopedia of neuroscience. Academic Press, Oxford, UK, pp 75–87

  • Lechan RM, Segerson TP (1989) Pro-TRH gene expression and precursor peptides in rat brain. Observations by hybridization analysis and immunocytochemistry. Ann N Y Acad Sci 553:29–59

    CAS  PubMed  Google Scholar 

  • Lyons DJ, Horjales-Araujo E, Broberger C (2010) Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: switch to tonic discharge by thyrotropin-releasing hormone. Neuron 65:217–229

    CAS  PubMed  Google Scholar 

  • Manaker S, Eichen A, Winokur A, Rhodes CH, Rainbow TC (1986) Autoradiographic localization of thyrotropin releasing hormone receptors in human brain. Neurology 36:641–646

    CAS  PubMed  Google Scholar 

  • Mantyh PW, Hunt SP (1985) Thyrotropin-releasing hormone (TRH) receptors. Localization by light microscopic autoradiography in rat brain using [3H][3-Me-His2]TRH as the radioligand. J Neurosci 5:551–561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mefford IN (1988) Epinephrine in mammalian brain. Prog Neuropsychopharmacol Biol Psychiatry 12:365–388

    CAS  PubMed  Google Scholar 

  • Merchenthaler I, Csernus V, Csontos C, Petrusz P, Mess B (1988) New data on the immunocytochemical localization of thyrotropin-releasing hormone in the rat central nervous system. Am J Anat 181:359–376

    CAS  PubMed  Google Scholar 

  • Merchenthaler I, Liposits Z (1994) Mapping of thyrotropin-releasing hormone (TRH) neuronal systems of rat forebrain projecting to the median eminence and the OVLT. Immunocytochemistry combined with retrograde labeling at the light and electron microscopic levels. Acta Biol Hung 45:361–374

    CAS  PubMed  Google Scholar 

  • Metcalf G, Dettmar PW (1981) Is thyrotropin releasing hormone an endogenous ergotropic substance in the brain? Lancet 1:586–589

    CAS  PubMed  Google Scholar 

  • Mihaly E, Fekete C, Legradi G, Lechan RM (2001) Hypothalamic dorsomedial nucleus neurons innervate thyrotropin-releasing hormone-synthesizing neurons in the paraventricular nucleus. Brain Res 891:20–31

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Okon E, Koch Y (1976) Localisation of gonadotropin-releasing and thyrotropin-releasing hormones in human brain by radioimmunoassay. Nature 263:345–347

    CAS  PubMed  Google Scholar 

  • Parker CR Jr, Porter JC (1983) Regional localization and subcellular compartmentalization of thyrotropin-releasing hormone in adult human brain. J Neurochem 41:1614–1622

    CAS  PubMed  Google Scholar 

  • Ruggiero DA, Ross CA, Anwar M, Park DH, Joh TH, Reis DJ (1985) Distribution of neurons containing phenylethanolamine N-methyltransferase in medulla and hypothalamus of rat. J Comp Neurol 239:127–154

    CAS  PubMed  Google Scholar 

  • Russell JA (2018) Fifty Years of Advances in Neuroendocrinology. Brain Neurosci Adv 2:2398212818812014

    PubMed  PubMed Central  Google Scholar 

  • Sharif NA, Burt DR (1983) Receptors for thyrotropin-releasing hormone (TRH) in rabbit spinal cord. Brain Res 270:259–263

    CAS  PubMed  Google Scholar 

  • Singh O, Pradhan DR, Nagalakshmi B, Kumar S, Mitra S, Sagarkar S, Sakharkar AJ, Lechan RM, Singru PS (2019) Thyrotropin-releasing hormone (TRH) in the brain and pituitary of the teleost, Clarias batrachus and its role in regulation of hypophysiotropic dopamine neurons. J Comp Neurol 527:1070–1101

    CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE (1980) Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31:410–417

    CAS  PubMed  Google Scholar 

  • Tashjian AH Jr, Barowsky NJ, Jensen DK (1971) Thyrotropin releasing hormone: direct evidence for stimulation of prolactin production by pituitary cells in culture. Biochem Biophys Res Commun 43:516–523

    CAS  PubMed  Google Scholar 

  • Tillet Y (1994) Catecholaminergic neuronal systems in the diencephalon of mammals. In: Smeets WJ, Reinwer A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 207–246

    Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48

    CAS  PubMed  Google Scholar 

  • van Vulpen EH, Yang CR, Nissen R, Renaud LP (1999) Hypothalamic A14 and A15 catecholamine cells provide the dopaminergic innervation to the supraoptic nucleus in rat: a combined retrograde tracer and immunohistochemical study. Neuroscience 93:675–680

    PubMed  Google Scholar 

  • Vogel RA, Cooper BR, Barlow TS, Prange AJ Jr, Mueller RA, Breese GR (1979) Effects of thyrotropin-releasing hormone on locomotor activity, operant performance and ingestive behavior. J Pharmacol Exp Ther 208:161–168

    CAS  PubMed  Google Scholar 

  • Wittmann G, Fuzesi T, Singru PS, Liposits Z, Lechan RM, Fekete C (2009) Efferent projections of thyrotropin-releasing hormone-synthesizing neurons residing in the anterior parvocellular subdivision of the hypothalamic paraventricular nucleus. J Comp Neurol 515:313–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Merchenthaler.

Ethics declarations

Conflict of interest

The authors have nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudas, B., Merchenthaler, I. Thyrotropin-releasing hormone axonal varicosities appear to innervate dopaminergic neurons in the human hypothalamus. Brain Struct Funct 225, 2193–2201 (2020). https://doi.org/10.1007/s00429-020-02120-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-020-02120-8

Keywords

Navigation