Skip to main content
Log in

Pupillary light reflex circuits in the Macaque Monkey: the olivary pretectal nucleus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The olivary pretectal nucleus is the first central connection in the pupillary light reflex pathway, the circuit that adjusts the diameter of the pupil in response to ambient light levels. This study investigated aspects of the morphology and connectivity of the olivary pretectal nucleus in macaque monkeys by use of anterograde and retrograde tracers. Within the pretectum, the vast majority of neurons projecting to the preganglionic Edinger–Westphal nucleus were found within the olivary pretectal nucleus. Most of these neurons had somata located at the periphery of the nucleus and their heavily branched dendrites extended into the core of the nucleus. Retinal terminals were concentrated within the borders of the olivary pretectal nucleus. Ultrastructural examination of these terminals showed that they had clear spherical vesicles, occasional dense-core vesicles, and made asymmetric synaptic contacts. Retrogradely labeled cells projecting to the preganglionic Edinger–Westphal nucleus displayed relatively few somatic contacts. Double labeling indicated that these neurons receive direct retinal input. The concentration of retinal terminals within the nucleus and the extensive dendritic trees of the olivary projection cells provide a substrate for very large receptive fields. In some species, pretectal commissural connections are a substrate for balancing the direct and consensual pupillary responses to produce pupils of equal size. In the macaque, there was little evidence for such a commissural projection based on either anterograde or retrograde tracing. This may be due to the fact that each macaque retina provides nearly equal density projections to the ipsilateral and contralateral olivary pretectal nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

At:

Axon terminal

At*:

Labeled axon terminal

BDA:

Biotinylated dextran amine

CC:

Caudal central subdivision

CG:

Central gray

Den:

Dendrite

Den*:

Labeled dendrite

DLG:

Dorsal lateral geniculate nucleus

DR:

Dorsal raphe

EWpg:

Preganglionic Edinger-Westphal nucleus

IC:

Inferior colliculus

III:

Oculomotor nucleus

InC:

Interstitial nucleus of Cajal

IV:

Trochlear nucleus

MD:

Medial dorsal nucleus

MG:

Medial geniculate nucleus

MLF:

Medial longitudinal fasciculus

MPt:

Medial pretectal nucleus

MRF:

Midbrain reticular formation

nOT:

Nucleus of the optic tract

nPC:

Nucleus of the posterior commissure

OPt:

Olivary pretectal nucleus

P:

Pyramid

PAG:

Periaqueductal gray

PC:

Posterior commissure

PhaL:

Phaseolus vulgaris leucoagglutinin

PRF:

Pontine reticular formation

PPT:

Posterior pretectal nucleus

Pt:

Pretectum

Pul:

Pulvinar

SGI:

Intermediate gray layer

SGP:

Deep gray layer

SN:

Substantia nigra

SOA:

Supraoculomotor area

Soma*:

Labeled soma

WGA-HRP:

Wheat germ agglutinin conjugated horseradish peroxidase

References

  • Baleydier C, Magnin M, Cooper HM (1990) Macaque accessory optic system: II. Connections with the pretectum. J Comp Neurol 302:405–416

    Article  CAS  PubMed  Google Scholar 

  • Barnerssoi M, May PJ (2016) Postembedding immunohistochemistry for inhibitory neurotransmitters in conjunction with neuroanatomical tracers. In: Van Bockstaele EJ (ed) Transmission electron microscopy methods for understanding the brain. Neuromethods, vol 115. Springer Science, New York, pp 181–203

    Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Campbell G, Lieberman AR (1982) Synaptic organization in the olivary pretectal nucleus of the adult rat. Neurosci Lett 28:151–155

    Article  CAS  PubMed  Google Scholar 

  • Campbell G, Lieberman AR (1985) The olivary pretectal nucleus: experimental anatomical studies in the rat. Philos Trans R Soc Lond B Biol Sci 310:573–609

    Article  CAS  PubMed  Google Scholar 

  • Chen B, May PJ (2000) The feedback circuit connecting the superior colliculus and central mesencephalic reticular formation: a direct morphological demonstration. Exp Brain Res 131:10–21

    Article  CAS  PubMed  Google Scholar 

  • Clarke RJ, Ikeda H (1985a) Luminance detectors in the olivary pretectal nucleus and their relationship to the pupillary light reflex in the rat. II. Studies using sinusoidal light. Exp Brain Res 59:83–90

    Article  CAS  PubMed  Google Scholar 

  • Clarke RJ, Ikeda H (1985b) Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat. I. Studies with steady luminance levels. Exp Brain Res 57:224–232

    Article  CAS  PubMed  Google Scholar 

  • Clarke RJ, Blanks RH, Giolli RA (2003a) Midbrain connections of the olivary pretectal nucleus in the marmoset (Callithrix jacchus): implications for the pupil light reflex pathway. Anat Embryol (Berl) 207:149–155

    Article  Google Scholar 

  • Clarke RJ, Zhang H, Gamlin PD (2003b) Primate pupillary light reflex: receptive field characteristics of pretectal luminance neurons. J Neurophysiol 89:3168–3178

    Article  PubMed  Google Scholar 

  • Distler C, Hoffmann KP (1989) The pupillary light reflex in normal and innate microstrabismic cats, I: behavior and receptive-field analysis in the nucleus praetectalis olivaris. Vis Neurosci 3:127–138

    Article  CAS  PubMed  Google Scholar 

  • Fukuda Y, Stone J (1974) Retinal distribution and central projections of Y-, X-, and W-cells of the cat's retina. J Neurophysiol 37:749–772

    Article  CAS  PubMed  Google Scholar 

  • Gamlin PDR (2006) The pretectum: connections and oculomotor-related roles. Prog Brain Res 151:379–405

    Article  PubMed  Google Scholar 

  • Gamlin PD, Clarke RJ (1995) The pupillary light reflex pathway of the primate. J Am Opt Assoc 66:415–418

    CAS  Google Scholar 

  • Gamlin PD, Cohen DH (1988) Retinal projections to the pretectum in the pigeon (Columba livia). J Comp Neurol 269:1–17

    Article  CAS  PubMed  Google Scholar 

  • Gamlin PD, Reiner A, Erichsen JT, Karten HJ, Cohen DH (1984) The neural substrate for the pupillary light reflex in the pigeon (Columba livia). J Comp Neurol 226:523–543

    Article  CAS  PubMed  Google Scholar 

  • Gamlin PD, Zhang H, Clarke RJ (1995) Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey. Exp Brain Res 106:169–176

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Sawchenko PE (1984) An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290:219–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory KM (1985) The dendritic architecture of the visual pretectal nuclei of the rat: a study with the Golgi-Cox method. J Comp Neurol 234:122–135

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey D, Gamlin PD (2014) Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 522:2231–2248

    Article  CAS  PubMed  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann KP, Ballas I, Wagner HJ (1984) Double labelling of retinofugal projections in the cat: a study using anterograde transport of 3H-proline and horseradish peroxidase. Exp Brain Res 53:420–430

    Article  CAS  PubMed  Google Scholar 

  • Hutchins B, Weber JT (1985a) The pretectal complex of the monkey: a reinvestigation of the morphology and retinal terminations. J Comp Neurol 232:425–442

    Article  CAS  PubMed  Google Scholar 

  • Hutchins B, Weber JT (1985b) The pretectal olivary nucleus of the cat: evidence for a two-tailed structure. Brain Res 331:150–154

    Article  CAS  PubMed  Google Scholar 

  • Klooster J, Vrensen GF (1997) The ultrastructure of the olivary pretectal nucleus in rats. A tracing and GABA immunohistochemical study. Exp Brain Res 114:51–62

    Article  CAS  PubMed  Google Scholar 

  • Klooster J, van der Want JJ, Vrensen G (1983) Retinopretectal projections in albino and pigmented rabbits: an autoradiographic study. Brain Res 288:1–12

    Article  CAS  PubMed  Google Scholar 

  • Klooster J, Vrensen GF, Müller LJ, van der Want JJ (1995) Efferent projections of the olivary pretectal nucleus in the albino rat subserving the pupillary light reflex and related reflexes. A light microscopic tracing study. Brain Res 688:34–46

    Article  CAS  PubMed  Google Scholar 

  • Klooster J, Kamphuis W, Vrensen GF (2000) Immunohistochemical localization of substance P and substance P receptor (NK1) in the olivary pretectal nucleus of the rat. Exp Brain Res 131:57–63

    Article  CAS  PubMed  Google Scholar 

  • Liao HW, Ren X, Peterson BB, Marshak DW, Yau KW, Gamlin PD, Dacey DM (2016) Melanopsin-expressing ganglion cells in macaque and human retinas form two morphologically distinct populations. J Comp Neurol 524:2845–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman AR, Taylor AM, Campbell G (1985) Axon terminals of the projection from the superior colliculus to the olivary pretectal nucleus in the rat. Neurosci Lett 56:235–239

    Article  CAS  PubMed  Google Scholar 

  • May PJ, Sun W, Hall WC (1997) Reciprocal connections between the zona incerta and the pretectum and superior colliculus of the cat. Neuroscience 77:1091–1114

    Article  CAS  PubMed  Google Scholar 

  • May PJ, Sun W, Erichsen JT (2008) Defining the pupillary component of the perioculomotor preganglionic population within a unitary primate Edinger-Westphal nucleus. In: Kennard C, Leigh RJ (eds) Using eye movements as an experimental probe of brain function, Prog Brain Res, vol 171, pp 97–106

  • May PJ, Warren S, Gamlin PDR, Billig I (2018) An anatomic characterization of the midbrain near response neurons in the macaque monkey. Invest Ophthalmol Vis Sci 59:1486–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May P J, Reiner A, Gamlin PD (2019) Autonomic regulation of the eye. In: Encyclopedia of neuroendocrine and autonomic systems. In: Nelson R (ed). Oxford University Press, Oxford

  • Miguel-Hildago JJ, Senba E, Takatsuji K, Tohyama M (1994) Projections of takykinin- and glutaminase-containing rat retinal ganglion cells. Brain Res Bul 35:73–84

    Article  Google Scholar 

  • Mustari MJ, Fuchs AF, Kaneko CR, Robinson FR (1994) Anatomical connections of the primate pretectal nucleus of the optic tract. J Comp Neurol 349:111–128

    Article  CAS  PubMed  Google Scholar 

  • Olucha F, Martínez-García F, López-García C (1985) A new stabilizing agent for the tetramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP). J Neurosci Methods 13:131–138

    Article  CAS  PubMed  Google Scholar 

  • Ostrin LA, Strang CE, Chang K, Jnawali A, Hung LF, Arumugam B, Frishman LJ, Smith EL 3rd, Gamlin PD (2018) Immunotoxin-induced ablation of the intrinsically photosensitive retinal ganglion cells in rhesus monkeys. Front Neurol 9:1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Pong M, Fuchs AF (2000) Characteristics of the pupillary light reflex in the macaque monkey: discharge patterns of pretectal neurons. J Neurophysiol 84:964–974

    Article  CAS  PubMed  Google Scholar 

  • Scalia F (1972) Retinal projections to the olivary pretectal nucleus in the tree shrew and comparison with the rat. Brain Behav Evol 6:237–252

    Article  CAS  PubMed  Google Scholar 

  • Scalia F, Arango V (1979) Topographic organization of the projections of the retina to the pretectal region in the rat. J Comp Neurol 186:271–292

    Article  CAS  PubMed  Google Scholar 

  • Scalia F, Rasweiler JJ 4th, Danias J (2015) Retinal projections in the short-tailed fruit bat, Carollia perspicillata, as studied using the axonal transport of cholera toxin B subunit: comparison with mouse. J Comp Neurol 523:1756–1791

    Article  PubMed  Google Scholar 

  • Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A (2011) Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 31:16094–16101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson JI, Giolli RA, Blanks RH (1988) The pretectal nuclear complex and the accessory optic system. Rev Oculomot Res 2:335–364

    CAS  PubMed  Google Scholar 

  • Steiger HJ, Büttner-Ennever JA (1979) Oculomotor nucleus afferents in the monkey demonstrated with horseradish peroxidase. Brain Res 160:1–15

    Article  CAS  PubMed  Google Scholar 

  • Sun W, May PJ (1995) Morphology and connections of the pupillary light reflex pathway in cat and monkey. Invest Ophthal Vis Sci 36:S12

    Google Scholar 

  • Sun W, May PJ (2014a) Central pupillary light reflex circuits in the cat: I. The olivary pretectal nucleus. J Comp Neurol 522:3960–3977

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, May PJ (2014b) Central pupillary light reflex circuits in the cat: II. Morphology, ultrastructure, and inputs of preganglionic motoneurons. J Comp Neurol 522:3978–4002

    Article  PubMed  PubMed Central  Google Scholar 

  • Trejo LJ, Cicerone CM (1984) Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res 300:49–62

    Article  CAS  PubMed  Google Scholar 

  • Weber JT, Young R, Hutchins B (1981) Morphologic and autoradiographic evidence for a laminated pretectal olivary nucleus in the squirrel monkey. Brain Res 224:153–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Malinda Danielson, Jinrong Wei, and Olga Golanov for their technical assistance with respect to surgeries and processing of the brains, as well as preparation of the figures. We are also indebted to Mr. Glen Hoskins for processing and cutting tissue for electron microscopy.

Funding

Portions of the material presented here were supported by funds from National Institute of Health grants: EY07166 to Paul J. May, EY014263 to Paul J. May, Paul D.R. Gamlin, and Susan Warren, and National Science Foundation Grant IBN-0130954 to Martha Bickford and Paul J. May.

Author information

Authors and Affiliations

Authors

Contributions

PJM helped to: design the experiments, carry out the experiments, analyze the data, write the manuscript, and edit the manuscript. SW helped to: carry out the experiments, analyze the data, and edit the manuscript.

Corresponding author

Correspondence to Paul J. May.

Ethics declarations

Conflict of interest

Neither author has any perceived or real conflicts of interest with respect to this submission.

Ethical use of animals statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted. Specifically, they were undertaken under protocols approved by the Institutional Animal Care and Use Committee of the University of Mississippi Medical Center (USDA Animal Welfare Assurance # D16-00174).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

May, P.J., Warren, S. Pupillary light reflex circuits in the Macaque Monkey: the olivary pretectal nucleus. Brain Struct Funct 225, 305–320 (2020). https://doi.org/10.1007/s00429-019-02003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-02003-7

Keywords

Navigation