Skip to main content
Log in

Fiber dissection and 3-tesla diffusion tensor tractography of the superior cerebellar peduncle in the human brain: emphasize on the cerebello-hypthalamic fibers

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Experimental studies in various species using tract-tracing techniques showed clear evidence of the presence of cerebello-hypothalamic projections. However, these connections were not clearly described in humans. In the present study we aimed to describe the direct cerebello-hypothalamic connections within the superior cerebellar peduncle (SCP) using fiber dissection techniques on cadaveric brains and diffusion tensor tractography (DTI) in healthy adults. Fiber dissection was performed in a stepwise manner from lateral to medial on 6 cerebral hemispheres. The gray matter was decorticate and fiber tracts were revealed. The SCP was exposed and the fibers were traced distally using wooden spatulas. The MRI examinations were performed in seven cases using 3-tesla 3T unit. The direct cerebello-hyothalamic pathways were exposed using high-spatial-resolution DTI. The present study using both fiber dissection and DTI in adult human showed direct cerebello-hypothalamic fibers within the SCP. The SCP fibers course anterolateral to the cerebral aqueduct reaching the level of the red nucleus of the midbrain. The majority of the fibers crosses over and reached the contralateral diencephalic structures and some of these fibers terminated at the contralateral anterior hypothalamic area. Some of the uncrossed SCP fibers reached the ipsilateral diencephalic structures and terminated at the ipsilateral posterior hypothalamic area. We further reported the close relationship of the SCP with the MCP, lateral lemniscus, red nucleus and substantia nigra. In the DTI evaluations of the SCP we exposed unilateral left cerebello-hypothalamic fibers in five cases and bilateral cerebello-hypothalamic fibers in two cases. The present study demonstrates the direct cerebello-hypothalamic connections within the SCP for the first time using fiber dissection and DTI technique in the human brain. The detailed knowledge of the cerebello-hypothalamic fibers can outline the unexplained deficit that may occur during regional surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Algin O, Ozmen E (2015) Ectopic anterior cerebellum (ala lobule centralis). Neuroradiol J 28(3):278–280

    PubMed  PubMed Central  Google Scholar 

  • Anderson G, Armstrong DM, Edgley SA (1987) Impulse activities of cerebellar neurons during locomotion in the cat. In: King JS (ed) New concepts in cerebellar neurobiology. Alan R. Liss, New York, pp 349–370

    Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1980) Nucleus interpositus projection to the spinal interneurons in monkey. Brain Res 24:49–68

    Google Scholar 

  • Ban T, Inoue K, Ozaki S et al (1956) Interrelation between anterior lobe of cerebellum and hypothalamus in rabbit. Med J Osaka Univ 7:101–115

    Google Scholar 

  • Bentivoglio M, Kuypers HG (1982) Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord. A fluorescent double retrograde labeling study. Exp Brain Res 46(3):339–356

    CAS  PubMed  Google Scholar 

  • Cajal SR (1972) Histologie du système nerveux. Instituto Ramony Cajal, Madrid

    Google Scholar 

  • Cao BB, Huang Y, Lu JH et al (2013) Cerebellar fastigial nuclear GABAergic projections to the hypothalamus modulate. Immune function. Brain Behav Immun 27(1):80

    CAS  PubMed  Google Scholar 

  • Cavdar S, San T, Aker R (2001) Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat 198(Pt 1):37–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Çavdar S, Özgür M, Kuvvet Y et al (2018a) Cortical, subcortical and brain stem connections of the cerebellum via the superior and middle cerebellar peduncle in the rat. J Integr Neurosci 17(3–4):609–618

    PubMed  Google Scholar 

  • Çavdar S, Özgur M, Kuvvet Y et al (2018b) The cerebello-hypothalamic and hypothalamo-cerebellar pathways via superior and middle cerebellar peduncle in the rat. Cerebellum 17(5):517–524

    PubMed  Google Scholar 

  • Chida K, Iadecola C, Underwood MD (1986) A novel vasodepressor response elicited from the rat cerebellar fastigial nucleus: the fastigial depressor response. Brain Res 370:378–382

    CAS  PubMed  Google Scholar 

  • Cohen D, Yarom Y (2000) Cerebellar on-beam and lateral inhibition: two functionally distinct circuits. J Neurophysiol 83(4):1932–1940

    CAS  PubMed  Google Scholar 

  • D’Angelo E, Casali S (2013) Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits 6:116

    PubMed  PubMed Central  Google Scholar 

  • Dietrichs E (1983) Cerebellar cortical afferents from the periaqueductal grey in the cat. Neurosci Lett 41:21–26

    CAS  PubMed  Google Scholar 

  • Dietrichs E, Zheng ZH (1984) Are hypothalamo-cerebellar fibers collaterals from the hypothalamo-spinal projection? Brain Res 296(2):225–231

    CAS  PubMed  Google Scholar 

  • Dietrichs E, Haines DE, Qvist H (1985) Indirect hypothalamo-cerebellar pathway? Demonstration of hypothalamic efferents to the lateral reticular nucleus. Exp Brain Res 60:483–491

    CAS  PubMed  Google Scholar 

  • Faull RLM, Carman JB (1978) The cerebellofugal projections in the brachium conjunctivum of the rat. I. The contralateral ascending pathway. J Comp Neurol 178:495–518

    CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E (1984) An HRP study of hypothalamo-cerebellar and cerebellohypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol 229:559–575

    CAS  PubMed  Google Scholar 

  • Haines DE, Manto MU (2007) Clinical symptoms of cerebellar disease and their interpretation. Cerebellum 6(4):360–374

    PubMed  Google Scholar 

  • Haines DE, Dietrichs E, Sowa TE (1984) Hypothalamo-cerebellar and cerebello-hypothalamic pathways: a review and hypothesis concerning cerebellar circuits which may influence autonomic centers affective behavior. Brain Behav Evol 24(4):98–220

    Google Scholar 

  • Haines DE, May PJ, Dietrichs E (1990) Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol 299(1):106–122

    CAS  PubMed  Google Scholar 

  • Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 41:83–107

    CAS  PubMed  Google Scholar 

  • Jacobs VL (1965) The cerebellofugal system in the tarsius (Tarsiidae carbonarius) and the marmoset (Oedipomidas oedipus). In: Doctoral dissertation. Lawrence, Kansas, USA: University of Kansas

  • Kamali A, Karbasian N, Rabiei P et al (2018) Revealing the cerebello-ponto-hypothalamic pathway in the human brain. Neurosci Lett 677:1–5

    CAS  PubMed  Google Scholar 

  • Kish SJ, El-Awar M, Stuss D et al (1994) Neuropsychological test performance in patients with dominantly inherited spinocerebellar ataxia: relationship to ataxia severity. Neurology 44:1738–1746

    CAS  PubMed  Google Scholar 

  • Klingler J, Ludwig E (1956) Atlas cerebrihumani. Karger, Basel

    Google Scholar 

  • Kyriakopoulos M, Vyasa NS, Barkerb GJ et al (2008) A diffusion tensor imaging study of white matter in early-onset schizophrenia. Biol Psychiatry 63:519–523

    PubMed  Google Scholar 

  • Leroi I, O’Hearn E, Marsh L (2002) Psychopathology in patients with degenerative cerebellar diseases: a comparison to Huntington’s disease. Am J Psychiatry 159(8):1306–1314

    PubMed  Google Scholar 

  • Li B, Zhuang QX, Gao HR, Wang JJ, Zhu JN (2017) Medial cerebellar nucleus projects to feeding-related neurons in the ventromedial hypothalamic nucleus in rats. Brain Struct Funct 222(2):957–971

    CAS  PubMed  Google Scholar 

  • Lilja Y, Nilsson DT (2015) Strengths and limitations of tractography methods to identify the optic radiation for epilepsy surgery. Quant Imaging Med Surg 5(2):288–299

    PubMed  PubMed Central  Google Scholar 

  • Lu JH, MaoHN Cao BB et al (2012) Effect of cerebellohypothalamic glutamatergic projections on immune function. Cerebellum 11(4):905–916

    CAS  PubMed  Google Scholar 

  • Martin GF, King JS, Dom R (1974) The projections of the deep cerebellar nuclei of the opossum, Didelphis marsupialis virginiana. J fuXr Hirnforschung 15:545–573

    Google Scholar 

  • Middleton FA, Strick PL (1997) Dentate output channels: motor and cognitive components. Progress in Brain Res 114:553–566

    CAS  Google Scholar 

  • Middleton FA, Strick PL (1998) Cerebellar output: motor and cognitive channels. Trends in Cognitive Sci 2:348–354

    CAS  Google Scholar 

  • Nashold BS Jr, Slaughter DG (1969) Effects of stimulating or destroying the deep cerebellar regions in man. J Neurosurg 31(2):172–186

    PubMed  Google Scholar 

  • Nimsky C, Bauer M, Carl B et al (2016) Merits and limits of tractography techniques for the uninitiated. Adv Tech Stand Neurosurg 43:37–60

    Google Scholar 

  • Peng YP, Qiu YH, Cao BB et al (2005) Effect of lesions of cerebellar fastigial nuclei on lymphocyte functions of rats. Neurosci Res 51:275–284

    CAS  PubMed  Google Scholar 

  • Peng YP, Qiu YH, Qiu J (2006) Cerebellar interposed nucleus lesions suppress lymphocyte function in rats. Brain Res Bull 71:10–17

    CAS  PubMed  Google Scholar 

  • Somana E, Walberg F (1979) Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett 11:41–47

    CAS  PubMed  Google Scholar 

  • Wallenberg A (1905) Sekundäre Bahnen aus dem frontalen sensiblen Trigeminuskerne des Kaninchens. Anat Anz 26:145–155

    Google Scholar 

  • Wayner MJ, Barone FC, Loullis CC (1991) The lateral hypothalamus and adjunctive behavior. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 3. Part B: behavioral studies of the hypothalamus. Marcel Dekker, New York, pp 107–146

    Google Scholar 

  • Wen YQ, Zhu JN, Zhang YP et al (2004) Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett 370(1):25–29

    CAS  PubMed  Google Scholar 

  • Zanchetti A, Zoccolini A (1954) Autonomic hypothalamic outbursts elicited by cerebellar stimulation. J Neurophysiol 17(5):475–483

    CAS  PubMed  Google Scholar 

  • Zheng ZH, Dietrichs E, Walberg F (1982) Cerebellar afferent fibres from the dorsalmotor vagal nucleus in the cat. Neurosci Lett 32(2):113–118

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Hakan Örer for the descriptive illustration which made the manuscript understandable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safiye Çavdar.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to disclose.

Ethical approval

All cadavers used in this study was donated for medical student’s dissections and research purposes. All procedures performed in studies were approved by the Institutional Ethics Committee of Koç University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavdar, S., Esen Aydın, A., Algin, O. et al. Fiber dissection and 3-tesla diffusion tensor tractography of the superior cerebellar peduncle in the human brain: emphasize on the cerebello-hypthalamic fibers. Brain Struct Funct 225, 121–128 (2020). https://doi.org/10.1007/s00429-019-01985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01985-8

Keywords

Navigation