Skip to main content
Log in

Reading without words or target detection? A re-analysis and replication fMRI study of the Landolt paradigm

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The Landolt paradigm is a visual scanning task intended to evoke reading-like eye-movements in the absence of orthographic or lexical information, thus allowing the dissociation of (sub-) lexical vs. visual processing. To that end, all letters in real word sentences are exchanged for closed Landolt rings, with 0, 1, or 2 open Landolt rings as targets in each Landolt sentence. A preliminary fMRI block-design study (Hillen et al. in Front Hum Neurosci 7:1–14, 2013) demonstrated that the Landolt paradigm has a special neural signature, recruiting the right IPS and SPL as part of the endogenous attention network. However, in that analysis, the brain responses to target detection could not be separated from those involved in processing Landolt stimuli without targets. The present study presents two fMRI experiments testing the question whether targets or the Landolt stimuli per se, led to the right IPS/SPL activation. Experiment 1 was an event-related re-analysis of the Hillen et al. (Front Hum Neurosci 7:1–14, 2013) data. Experiment 2 was a replication study with a new sample and identical procedures. In both experiments, the right IPS/SPL were recruited in the Landolt condition as compared to orthographic stimuli even in the absence of any target in the stimulus, indicating that the properties of the Landolt task itself trigger this right parietal activation. These findings are discussed against the background of behavioural and neuroimaging studies of healthy reading as well as developmental and acquired dyslexia. Consequently, this neuroimaging evidence might encourage the use of the Landolt paradigm also in the context of examining reading disorders, as it taps into the orientation of visual attention during reading-like scanning of stimuli without interfering sub-lexical information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Note that, with an average of 78% correct trials (cf. Results), there were around 32 valid trials per condition from which the HRF could be estimated.

References

  • Ablinger I, von Heyden K, Vorstius C, Halm K, Huber W, Radach R (2014) An eye movement based reading intervention in lexical and segmental readers with acquired dyslexia. Neuropsychol Rehabil 24:833–867

    Article  Google Scholar 

  • Blau V, Reithler J, van Atteveldt N, Seitz J, Gerretsen P, Goebel R, Blomert L (2010) Deviant processing of letters and speech sounds as proximate cause of reading failure: a functional magnetic resonance imaging study of dyslexic children. Brain 133:868–879

    Article  Google Scholar 

  • Bosse ML, Tainturier MJ, Valdois S (2007) Developmental dyslexia: the visual attention span deficit hypothesis. Cognition 104:198–230

    Article  Google Scholar 

  • Bueichekú E, Miró-Padilla A, Palomar-García MA, Ventura-Campos N, Parcet MA, Barrós-Loscertales A, Ávila C (2016) Reduced posterior parietal cortex activation after training on a visual search task. Neuroimage 135:204–213

    Article  Google Scholar 

  • Connor CM, Radach R, Vorstius C, Day SL, McLean L, Morrison FJ (2015) Individual differences in fifth graders’ reading and language predict their comprehension monitoring development: an eye-movement study. Sci Stud Read 19:114–134

    Article  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  CAS  Google Scholar 

  • Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297

    Article  CAS  Google Scholar 

  • De Luca M, Di Pace E, Judica A, Spinelli D, Zoccolotti P (1999) Eye movement patterns in linguistic and non-linguistic tasks in developmental surface dyslexia. Neuropsychologia 37:1407–1420

    Article  Google Scholar 

  • de Fockert J, Rees G, Frith C, Lavie N (2004) Neural correlates of attentional capture in visual search. J Cogn Neurosci 16:751–759

    Article  Google Scholar 

  • Dehaene S, Pegado F, Braga LW, Ventura P, Nunes Filho G, Jobert A, Dehaene-Lambertz G, Kolinsky R, Morais J, Cohen L (2010) How learning to read changes the cortical networks for vision and language. Science 330:1359–1364

    Article  CAS  Google Scholar 

  • Démonet JF, Taylor MJ, Chaix Y (2004) Developmental dyslexia. Lancet 363:1451–1460

    Article  Google Scholar 

  • Donner T, Kettermann A, Diesch E, Ostendorf F, Villringer A, Brandt SA (2000) Involvement of the human frontal eye field and multiple parietal areas in covert visual selection during conjunction search. Eur J Neurosci 12:3407–3414

    Article  CAS  Google Scholar 

  • Eickhoff SB et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335

    Article  Google Scholar 

  • Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. NeuroImage 26:471–479

    Article  Google Scholar 

  • Ferretti G, Mazzotti S, Brizzolara D (2008) Visual scanning and reading ability in normal and dyslexic children. Behav Neurol 19:87–92

    Article  CAS  Google Scholar 

  • Gabrieli JD (2009) Dyslexia: a new synergy between education and cognitive neuroscience. Science 325:280–283

    Article  CAS  Google Scholar 

  • Gagl B, Hawelka S, Hutzler F (2014) A similar correction mechanism in slow and fluent readers after suboptimal landing positions. Front Hum Neurosci 8:355

    Article  Google Scholar 

  • Günther T, Radach R, Huestegge L (2012). Blickbewegungen beim Lesen, Leseentwicklung und Legasthenie. Lernen und Lernstörungen 1:185–204

    Article  Google Scholar 

  • Heim S, Grande M (2012) Fingerprints of developmental dyslexia. Trends Neurosci Educ 1:10–14

    Article  Google Scholar 

  • Heim S, Tschierse J, Amunts K, Wilms M, Vossel S, Willmes K, Grabowska A, Huber W (2008) Cognitive subtypes of dyslexia. Acta Neurobiol Exp 68:73.82

    Google Scholar 

  • Heim S, Grande M, Meffert E, Eickhoff SB, Schreiber H, Kukolja J, Shah NJ, Huber W, Amunts K (2010a) Cognitive levels of performance account for hemispheric lateralisation effects in dyslexic and normally reading children. Neuroimage 53:1346–1358

    Article  Google Scholar 

  • Heim S, Grande M, Pape-Neumann J, van Ermingen M, Meffert E, Grabowska A, Huber W, Amunts K (2010b) Interaction of phonological awareness and “magnocellular” processing during normal and dyslexic reading: behavioural and fMRI investigations. Dyslexia 16:258–282

    Article  Google Scholar 

  • Helland T, Morken F (2016) Neurocognitive development and predictors of L1 and L2 literacy skills in dyslexia: a longitudinal study of children 5–11 years old. Dyslexia 22:3–26

    Article  Google Scholar 

  • Hillen R, Günther T, Kohlen C, Eckers C, van Ermingen-Marbach M, Sass K, Scharke W, Vollmar J, Radach R, Heim S (2013) Identifying brain systems for gaze orienting during reading: fMRI Investigation of the Landolt paradigm. Front Hum Neurosci 7:1–14

    Article  Google Scholar 

  • Hutzler F, Wimmer H (2003) Eye movements of dyslexic children when reading in a regular orthography. Brain Lang 89:235–242

    Article  Google Scholar 

  • Hutzler F, Kronbichler M, Jacobs AM, Wimmer H (2006) Perhaps correlational but not causal: no effect of dyslexic readers’ magnocellular system on their eye movements during reading. Neuropsychologia 44:637–648

    Article  Google Scholar 

  • Leppänen PH, Hämäläinen JA, Salminen HK, Eklund KM, Guttorm TK, Lohvansuu K, Puolakanaho A, Lyytinen H (2010) Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex 46:1362–1376

    Article  Google Scholar 

  • Lobier MA, Peyrin C, Pichat C, Le Bas JF, Valdois S (2014) Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Front Hum Neurosci 8:479

    Article  Google Scholar 

  • Lukov L, Friedmann N, Shalev L, Khentov-Kraus L, Shalev N, Lorber R, Guggenheim R (2015) Dissociations between developmental dyslexias and attention deficits. Front Psychol 5:1501

    Article  Google Scholar 

  • Lyytinen H, Erskine J, Hämäläinen J, Torppa M, Ronimus M (2015) Dyslexia-early identification and prevention: highlights from the Jyväskylä longitudinal study of dyslexia. Curr Dev Disord Rep 2:330–338

    Article  Google Scholar 

  • Madden DJ, Parks EL, Tallman CW, Boylan MA, Hoagey DA, Cocjin SB, Johnson MA, Chou YH, Potter GG, Chen NK, Packard LE, Siciliano RE, Monge ZA, Diaz MT (2017) Frontoparietal activation during visual conjunction search: effects of bottom-up guidance and adult age. Hum Brain Mapp 38:2128–2149

    Article  Google Scholar 

  • Martin A, Schurz M, Kronbichler M, Richlan F (2015) Reading in the brain of children and adults: a meta-analysis of 40 functional magnetic resonance imaging studies. Hum Brain Mapp 36:1963–1981

    Article  Google Scholar 

  • Martin A, Kronbichler M, Richlan F (2016) Dyslexic brain activation abnormalities in deep and shallow orthographies: a meta-analysis of 28 functional neuroimaging studies. Hum Brain Mapp 37:2676–2699

    Article  Google Scholar 

  • Maurer U, Bucher K, Brem S, Benz R, Kranz F, Schulz E, van der Mark S, Steinhausen HC, Brandeis D (2009) Neurophysiology in preschool improves behavioral prediction of reading ability throughout primary school. Biol Psychiat 66:341–348

    Article  Google Scholar 

  • Nobre AC, Coull JT, Walsh V, Frith CD (2003) Brain activation during visual search: contributions of search efficiency versus feature binding. Neuroimage 18:91–103

    Article  CAS  Google Scholar 

  • Peters K, Scharke W, Willmes K, Radach R, Günther T (2015) Blickbewegungen bei Dyslexie und Aufmerksamkeitsdefizit. Sprache Stimme Gehör 39:S3–S4

    Article  Google Scholar 

  • Prado C, Dubois M, Valdois S (2007) The eye movements of dyslexic children during reading and visual search: impact of the visual attention span. Vis Res 47:2521–2530

    Article  Google Scholar 

  • Radach R, Günther T, Huestegge L (2012) Blickbewegungen beim Lesen, Leseentwicklung und Legasthenie. Lernen und Lernstörungen 1(3):185–204

    Article  Google Scholar 

  • Ramus F (2003) Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Curr Opin Neurobiol 13:212–218

    Article  CAS  Google Scholar 

  • Ramus F (2004) Neurobiology of dyslexia: a reinterpretation of the data. Trends Neurosci 27:720–726

    Article  CAS  Google Scholar 

  • Ramus F, Rosen S, Dakin SC, Day BL, Castellote JM, White S, Frith U (2003) Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain 126:841–865

    Article  Google Scholar 

  • Rayner K (1998) Eye movements in reading and information processing: 20 years of research. Psychol Bull 3:372–422

    Article  Google Scholar 

  • Reid AA, Szczerbinski M, Iskierka-Kasperek E, Hansen P (2007) Cognitive profiles of adult developmental dyslexics: theoretical implications. Dyslexia 13:1–24

    Article  Google Scholar 

  • Reilhac C, Peyrin C, Démonet JF, Valdois S (2013) Role of the superior parietal lobules in letter-identity processing within strings: FMRI evidence from skilled and dyslexic readers. Neuropsychologia 51:601–612

    Article  Google Scholar 

  • Richlan F, Kronbichler M, Wimmer H (2011) Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage 56:1735–1742

    Article  Google Scholar 

  • Richlan F, Gagl B, Hawelka S, Braun M, Schurz M, Kronbichler M, Hutzler F (2014) Fixation-related FMRI analysis in the domain of reading research: using self-paced eye movements as markers for hemodynamic brain responses during visual letter string processing. Cereb Cortex 24:2647–2656

    Article  Google Scholar 

  • Schaadt G, Männel C, van der Meer E, Pannekamp A, Oberecker R, Friederici AD (2015) Present and past: can writing abilities in school children be associated with their auditory discrimination capacities in infancy? Res Dev Disabil 47:318–333

    Article  Google Scholar 

  • Stein J (2001) The magnocellular theory of developmental dyslexia. Dyslexia 7:12–36

    Article  CAS  Google Scholar 

  • Thiel CM, Zilles K, Fink GR (2004) Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. NeuroImage 21:318–328

    Article  Google Scholar 

  • Valdois S, Bosse MLB, Ans B, Carbonnel S, Zorman M et al (2003) Phonological and visual processing deficits can dissociate in developmental dyslexia: evidence from two case studies. Read Writ 16:1–32

    Article  Google Scholar 

  • van Ermingen-Marbach M, Grande M, Pape-Neumann J, Sass K, Heim S (2013) Distinct neural signatures of cognitive subtypes of dyslexia: an fMRI study on phonological processing in developmental dyslexics with and without phonological deficits. Neuroimage Clin 2:477–490

    Article  Google Scholar 

  • van der Leij A, van Bergen E, van Zuijen T, de Jong P, Maurits N, Maassen B (2013) Precursors of developmental dyslexia: an overview of the longitudinal Dutch Dyslexia Programme study. Dyslexia 19:191–213

    Article  Google Scholar 

  • Wimmer H, Ludersdorfer P, Richlan F, Kronbichler M (2016) Visual experience shapes orthographic representations in the visual word form area. Psychol Sci 27:1240–1248

    Article  Google Scholar 

  • Yan Y, Wei R, Zhang Q, Jin Z, Li L (2016) Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study. Sci Rep 6:30300

    Article  CAS  Google Scholar 

  • Zhou W, Shu H (2017) A meta-analysis of functional magnetic resonance imaging studies of eye movements and visual word reading. Brain Behav 7:e00683

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National German Research Agency (Deutsche Forschungsgemeinschaft) Grant GU-1177/1-1. We wish to thank Ralph Weidner for his insightful comments on an earlier version of this manuscript.

Funding

This research was funded by the National German Research Agency (Deutsche Forschungsgemeinschaft) Grant GU-1177/1-1 to TG and SH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heim.

Ethics declarations

Conflict of interest

The author declares that there is no competing interest.

Research involving human participants

This study was conducted on healthy human volunteers in accordance with the Declaration of Helsinki.

Informed consent

Informed written consent was obtained from all participants.

Ethical approval

Ethical approval was obtained from the Ethics Committee at the Medical Faculty of RWTH Aachen University.

Appendix

Appendix

See Tables 9 and 10.

Table 9 Results of the pair-wise t tests for Experiment 1
Table 10 Results of the pair-wise t tests for Experiment 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heim, S., von Tongeln, F., Hillen, R. et al. Reading without words or target detection? A re-analysis and replication fMRI study of the Landolt paradigm. Brain Struct Funct 223, 3447–3461 (2018). https://doi.org/10.1007/s00429-018-1698-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1698-x

Keywords

Navigation