Skip to main content
Log in

Neural substrates of fear-induced hypophagia in male and female rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Cessation of eating under fear is an adaptive response that aids survival by prioritizing the expression of defensive behaviors over feeding behavior. However, this response can become maladaptive when persistent. Thus, accurate mediation of the competition between fear and feeding is important in health and disease; yet, the underlying neural substrates are largely unknown. The current study identified brain regions that were recruited when a fear cue inhibited feeding in male and female rats. We used a previously established behavioral paradigm to elicit hypophagia with a conditioned cue for footshocks, and Fos imaging to map activation patterns during this behavior. We found that distinct patterns of recruitment were associated with feeding and fear expression, and that these patterns were similar in males and females except within the medial prefrontal cortex (mPFC). In both sexes, food consumption was associated with activation of cell groups in the central amygdalar nucleus, hypothalamus, and dorsal vagal complex, and exposure to food cues was associated with activation of the anterior basolateral amygdalar nucleus. In contrast, fear expression was associated with activation of the lateral and posterior basomedial amygdalar nuclei. Interestingly, selective recruitment of the mPFC in females, but not in males, was associated with both feeding and freezing behavior, suggesting sex differences in the neuronal processing underlying the competition between feeding and fear. This study provided the first evidence of the neural network mediating fear-induced hypophagia, and important functional activation maps for future interrogation of the underlying neural substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ACAd:

Anterior cingulate area, dorsal part

ANOVA:

Analysis of variance

BLA:

Basolateral amygdalar nucleus

BLAa:

Basolateral amygdalar nucleus, anterior part

BLAp:

Basolateral amygdalar nucleus, posterior part

BMA:

Basomedial amygdalar nucleus

BMAa:

Basomedial amygdalar nucleus, anterior part

BMAp:

Basomedial amygdalar nucleus, posterior part

CEA:

Central amygdalar nucleus

CEAc:

Central amygdalar nucleus, capsular part

CEAl:

Central amygdalar nucleus, lateral part

CEAm:

Central amygdalar nucleus, medial part

CS:

Conditioned stimulus

DMX:

Dorsal motor nucleus vagus nerve

ILA:

Infralimbic area

LA:

Lateral amygdalar nucleus

LHA:

Lateral hypothalamic area

mPFC:

Medial prefrontal cortex

NTSm:

Nucleus of the solitary tract, medial part

PL:

Prelimbic area

PVH:

Paraventricular hypothalamic nucleus

PVHdp:

Paraventricular hypothalamic nucleus, dorsal parvicellular part

PVHmpd:

Paraventricular hypothalamic nucleus, medial parvicellular part, dorsal zone

PVHmpv:

Paraventricular hypothalamic nucleus, medial parvicellular part, ventral zone

PVHpml:

Paraventricular hypothalamic nucleus, posterior magnocellular part, lateral

PVHpv:

Paraventricular hypothalamic nucleus, periventricular part

PVT:

Paraventricular thalamic nucleus

SO:

Supraoptic nucleus, proper

US:

Unconditioned stimulus

References

  • Amano T, Duvarci S, Popa D, Pare D (2011) The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J Neurosci 31:15481–15489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson LC, Petrovich GD (2017) Sex specific recruitment of a medial prefrontal cortex-hippocampal-thalamic system during context-dependent renewal of responding to food cues in rats. Neurobiol Learn Mem 139:11–21

    Article  PubMed  Google Scholar 

  • Anderson LC, Petrovich GD (2018) Ventromedial prefrontal cortex mediates sex differences in persistent cognitive drive for food. Sci Rep 8(1):2230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anglada-Figueroa D, Quirk GJ (2005) Lesions of the basal amygdala block expression of conditioned fear but not extinction. J Neurosci 25:9680–9685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Asarian L, Geary N (2013) Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 305:R1215-1267

    Article  CAS  Google Scholar 

  • Beck CH, Fibiger HC (1995) Conditioned fear-induced changes in behavior and in the expression of the immediate early gene c-fos: with and without diazepam pretreatment. J Neurosci 15:709–720

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Becker J, Taylor J (2008) Sex differences in motivation. In: Becker J, Berkley K, Geary N, Hampson E, Herman J, Young E (eds) Sex differences in the brain from genes to behavior. Oxford University Press, New York, pp 177–199

    Google Scholar 

  • Becker JB, Monteggia LM, Perrot-Sinal TS, Romeo RD, Taylor JR, Yehuda R, Bale TL (2007) Stress and disease: is being female a predisposing factor? J Neurosci 27:11851–11855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berthoud HR, Münzberg H (2011) The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol Behav 104:29–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blair HT, Sotres-Bayon F, Moita MA, Ledoux JE (2005) The lateral amygdala processes the value of conditioned and unconditioned aversive stimuli. Neuroscience 133:561–569

    Article  PubMed  CAS  Google Scholar 

  • Blanchard RJ, Blanchard DC (1969) Crouching as an index of fear. J Comp Physiol Psychol 67:370–375

    Article  PubMed  CAS  Google Scholar 

  • Bouton ME, Bolles RC (1980) Conditioned fear assessed by freezing and by the suppression of 3 different baselines. Animal Learning Behavior 8:429–434

    Article  Google Scholar 

  • Brown BL, Hendrix SB (2005) Partial correlation coefficients. In: Everitt BS, Howell DC (eds) Encyclopedia of statistics in behavioral science. Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/0470013192.bsa469

  • Bull LS, Pitts GC (1971) Gastric capacity and energy absorption in the force-fed rat. J Nutr 101:593–596

    Article  PubMed  CAS  Google Scholar 

  • Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7:477–484

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Haubensak W, Anthony TE, Anderson DJ (2014) Central amygdala PKC-delta(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17:1240–1248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell EJ, Barker DJ, Nasser HM, Kaganovsky K, Dayas CV, Marchant NJ (2017) Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala. Behav Neurosci 131:155–167

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Campese VD, Gonzaga R, Moscarello JM, LeDoux JE (2015) Modulation of instrumental responding by a conditioned threat stimulus requires lateral and central amygdala. Front Behav Neurosci 9:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon WB (1915) Bodily changes in pain, hunger, fear, and rage; an account of recent researches into the function of emotional excitement. D. Appleton and Company, New York

    Book  Google Scholar 

  • Cassell MD, Gray TS, Kiss JZ (1986) Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J Comp Neurol 246:478–499

    Article  PubMed  CAS  Google Scholar 

  • Choi DL, Davis JF, Fitzgerald ME, Benoit SC (2010) The role of orexin-A in food motivation, reward-based feeding behavior and food-induced neuronal activation in rats. Neuroscience 167:11–20

    Article  PubMed  CAS  Google Scholar 

  • Choy VJ, Watkins WB (1977) Immunocytochemical study of the hypothalamo-neurohypophysial system. II. Distribution of neurophysin, vasopressin and oxytocin in the normal and osmotically stimulated rat. Cell Tissue Res 180:467–490

    Article  PubMed  CAS  Google Scholar 

  • Cole S, Powell DJ, Petrovich GD (2013) Differential recruitment of distinct amygdalar nuclei across appetitive associative learning. Learn Mem 20:295–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole S, Hobin MP, Petrovich GD (2015a) Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions. Neuroscience 286:187–202

    Article  PubMed  CAS  Google Scholar 

  • Cole S, Mayer HS, Petrovich GD (2015b) Orexin/Hypocretin-1 receptor antagonism selectively reduces cue-induced feeding in sated rats and recruits medial prefrontal cortex and thalamus. Scientific reports 5:16143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Courtin J, Bienvenu TC, Einarsson EO, Herry C (2013) Medial prefrontal cortex neuronal circuits in fear behavior. Neuroscience 240:219–242

    Article  PubMed  CAS  Google Scholar 

  • Cover KK, Maeng LY, Lebron-Milad K, Milad MR (2014) Mechanisms of estradiol in fear circuitry: implications for sex differences in psychopathology. Transl Psychiatry 4:e422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • Danielsen EH, Magnuson DJ, Gray TS (1989) The central amygdaloid nucleus innervation of the dorsal vagal complex in rat: a Phaseolus vulgaris leucoagglutinin lectin anterograde tracing study. Brain Res Bull 22:705–715

    Article  PubMed  CAS  Google Scholar 

  • Day HE, Kryskow EM, Nyhuis TJ, Herlihy L, Campeau S (2008) Conditioned fear inhibits c-fos mRNA expression in the central extended amygdala. Brain Res 1229:137–146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Rev 38:192–246

    Article  PubMed  CAS  Google Scholar 

  • Douglass AM et al (2017) Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat Neurosci 20:1384–1394

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A (2009) Amygdala inhibitory circuits and the control of fear memory. Neuron 62:757–771

    Article  PubMed  CAS  Google Scholar 

  • Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    Article  PubMed  CAS  Google Scholar 

  • Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fanselow MS (1984) What is conditioned fear? TINS 7:460–462

    Google Scholar 

  • Fukushima A, Hagiwara H, Fujioka H, Kimura F, Akema T, Funabashi T (2015) Sex differences in feeding behavior in rats: the relationship with neuronal activation in the hypothalamus. Front Neurosci 9:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilmartin MR, Balderston NL, Helmstetter FJ (2014) Prefrontal cortical regulation of fear learning. Trends Neurosci 37:455–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gruene TM, Roberts E, Thomas V, Ronzio A, Shansky RM (2014) Sex-specific neuroanatomical correlates of fear expression in prefrontal-amygdala circuits. Biol Psychiatry 78:186–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruene TM, Flick K, Stefano A, Shea SD, Shansky RM (2015) Sexually divergent expression of active and passive conditioned fear responses in rats. eLife 4:e11352. https://doi.org/10.7554/eLife.11352

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn JD, Swanson LW (2010) Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 64:14–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn JD, Swanson LW (2012) Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. J Comp Neurol 520:1831–1890

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn JD, Swanson LW (2015) Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat. Front Syst Neurosci 9:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall J, Thomas KL, Everitt BJ (2001) Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur J Neurosci 13:1453–1458

    Article  PubMed  CAS  Google Scholar 

  • Holland PC, Hsu M (2014) Role of amygdala central nucleus in the potentiation of consuming and instrumental lever-pressing for sucrose by cues for the presentation or interruption of sucrose delivery in rats. Behav Neurosci 128:71–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes NM, Westbrook RF (2014) Appetitive context conditioning proactively, but transiently, interferes with expression of counterconditioned context fear. Learn Mem 21:597–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Jasnow AM et al (2013) Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition. J Neurosci 33:10396–10404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jennings JH et al (2015) Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160:516–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jimenez SA, Maren S (2009) Nuclear disconnection within the amygdala reveals a direct pathway to fear. Learn Mem 16:766–768

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirouac GJ (2015) Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev 56:315–329

    Article  PubMed  Google Scholar 

  • Kwon JT, Nakajima R, Kim HS, Jeong Y, Augustine GJ, Han JH (2014) Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory. Learn Mem 21:627–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebron-Milad K, Milad MR (2012) Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biol Mood Anxiety Disord 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ledoux J (2012) Rethinking the emotional brain. Neuron 73:653–676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S, Kirouac GJ (2012) Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus. Brain Struct Funct 217:257–273

    Article  PubMed  Google Scholar 

  • Li J et al (2012) Increased sucrose intake and corresponding c-Fos in amygdala and parabrachial nucleus of dietary obese rats. Neurosci Lett 525:111–116

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dong X, Li S, Kirouac GJ (2014) Lesions of the posterior paraventricular nucleus of the thalamus attenuate fear expression. Front Behav Neurosci 8:94

    PubMed  PubMed Central  Google Scholar 

  • Liubashina O, Jolkkonen E, Pitkanen A (2000) Projections from the central nucleus of the amygdala to the gastric related area of the dorsal vagal complex: a Phaseolus vulgaris-leucoagglutinin study in rat. Neurosci Lett 291:85–88

    Article  PubMed  CAS  Google Scholar 

  • Marchant NJ, Densmore VS, Osborne PB (2007) Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 504:702–715

    Article  PubMed  CAS  Google Scholar 

  • Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931

    Article  PubMed  CAS  Google Scholar 

  • Maren S, De Oca B, Fanselow MS (1994) Sex differences in hippocampal long-term potentiation (LTP) and Pavlovian fear conditioning in rats: positive correlation between LTP and contextual learning. Brain Res 661:25–34

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MM, Arnold AP, Ball GF, Blaustein JD, de Vries GJ (2012) Sex differences in the brain: the not so inconvenient truth. J Neurosci 32:2241–2247

    Article  PubMed  PubMed Central  Google Scholar 

  • McLean CP, Anderson ER (2009) Brave men and timid women? A review of the gender differences in fear and anxiety. Clin Psychol Rev 29:496–505

    Article  PubMed  Google Scholar 

  • McLean JH, Hopkins DA (1982) Ultrastructural identification of labeled neurons in the dorsal motor nucleus of the vagus nerve following injections of horseradish peroxidase into the vagus nerve and brainstem. J Comp Neurol 206:243–252

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    Article  PubMed  CAS  Google Scholar 

  • Moscarello JM, LeDoux JE (2013) Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J Neurosci 33:3815–3823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Namburi P et al (2015) A circuit mechanism for differentiating positive and negative associations. Nature 520:675–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norgren R (1978) Projections from the nucleus of the solitary tract in the rat. Neuroscience 3:207–218

    Article  PubMed  CAS  Google Scholar 

  • Norgren R (1983) The gustatory system in mammals. Am J Otolaryngol 4:234–237

    Article  PubMed  CAS  Google Scholar 

  • Norgren R, Smith GP (1988) Central distribution of subdiaphragmatic vagal branches in the rat. J Comp Neurol 273:207–223

    Article  PubMed  CAS  Google Scholar 

  • Olszewski PK, Klockars A, Olszewska AM, Fredriksson R, Schioth HB, Levine AS (2010) Molecular, immunohistochemical, and pharmacological evidence of oxytocin’s role as inhibitor of carbohydrate but not fat intake. Endocrinology 151:4736–4744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orsini CA, Willis ML, Gilbert RJ, Bizon JL, Setlow B (2016) Sex differences in a rat model of risky decision making. Behav Neurosci 130:50–61

    Article  PubMed  Google Scholar 

  • Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22:717–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9

    Article  PubMed  Google Scholar 

  • Park TH, Carr KD (1998) Neuroanatomical patterns of Fos-like immunoreactivity induced by a palatable meal and meal-paired environment in saline- and naltrexone-treated rats. Brain Res 805:169–180

    Article  PubMed  CAS  Google Scholar 

  • Pei H, Sutton AK, Burnett KH, Fuller PM, Olson DP (2014) AVP neurons in the paraventricular nucleus of the hypothalamus regulate feeding. Mol Metabol 3:209–215

    Article  CAS  Google Scholar 

  • Petrov T, Krukoff TL, Jhamandas JH (1995) Convergent influence of the central nucleus of the amygdala and the paraventricular hypothalamic nucleus upon brainstem autonomic neurons as revealed by c-fos expression and anatomical tracing. J Neurosci Res 42:835–845

    Article  PubMed  CAS  Google Scholar 

  • Petrovich GD (2013) Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 121:10–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrovich GD (2018) Lateral hypothalamus as a motivation-cognition interface in the control of feeding behavior. Front Syst Neurosci 12:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrovich GD, Lougee MA (2011) Sex differences in fear-induced feeding cessation: prolonged effect in female rats. Physiol Behav 104:996–1001

    Article  PubMed  CAS  Google Scholar 

  • Petrovich GD, Risold PY, Swanson LW (1996) Organization of projections from the basomedial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 374:387–420

    Article  PubMed  CAS  Google Scholar 

  • Petrovich GD, Ross CA, Holland PC, Gallagher M (2007) Medial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats. J Neurosci 27:6436–6441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petrovich GD, Ross CA, Mody P, Holland PC, Gallagher M (2009) Central, but not basolateral, amygdala is critical for control of feeding by aversive learned cues. J Neurosci 29:15205–15212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pezzone MA, Lee WS, Hoffman GE, Rabin BS (1992) Induction of c-Fos immunoreactivity in the rat forebrain by conditioned and unconditioned aversive stimuli. Brain Res 597:41–50

    Article  PubMed  CAS  Google Scholar 

  • Pitkänen A, Stefanacci L, Farb CR, Go GG, LeDoux JE, Amaral DG (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol 356:288–310

    Article  PubMed  Google Scholar 

  • Pitkänen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20:517–523

    Article  PubMed  Google Scholar 

  • Poulin AM, Timofeeva E (2008) The dynamics of neuronal activation during food anticipation and feeding in the brain of food-entrained rats. Brain Res 1227:128–141

    Article  PubMed  CAS  Google Scholar 

  • Pryce CR, Lehmann J, Feldon J (1999) Effect of sex on fear conditioning is similar for context and discrete CS in Wistar, Lewis and Fischer rat strains. Pharmacol Biochem Behavior 64:753–759

    Article  CAS  Google Scholar 

  • Quirk GJ, Likhtik E, Pelletier JG, Pare D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23:8800–8807

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reppucci CJ (2015) The functional forebrain circuitry of fear-cue inhibited feeding in food-deprived rats: evidence from complementary pathway tracing and Fos induction maps studies (Order No. 3719611). Available from ProQuest Dissertations & Theses Global (1713683085)

  • Reppucci CJ, Petrovich GD (2014) Suppressed Fos induction within the central nucleus of the amygdala corresponds with inhibited feeding in the presence of a fear-cue in male and female rats. Program No 256.10. 2014 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience

  • Reppucci CJ, Petrovich GD (2016) Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct 221:2937–2962

    Article  PubMed  Google Scholar 

  • Reppucci CJ, Kuthyar M, Petrovich GD (2013) Contextual fear cues inhibit eating in food-deprived male and female rats. Appetite 69:186–195

    Article  PubMed  Google Scholar 

  • Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153:1–26

    Article  PubMed  CAS  Google Scholar 

  • Ritter S, Dinh TT (1994) 2-Mercaptoacetate and 2-deoxy-d-glucose induce Fos-like immunoreactivity in rat brain. Brain Res 641:111–120

    Article  PubMed  CAS  Google Scholar 

  • Rogers RC, Kita H, Butcher LL, Novin D (1980) Afferent projections to the dorsal motor nucleus of the vagus. Brain Res Bull 5:365–373

    Article  PubMed  CAS  Google Scholar 

  • Rosen JB, Fanselow MS, Young SL, Sitcoske M, Maren S (1998) Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Res 796:132–142

    Article  PubMed  CAS  Google Scholar 

  • Savander V, Go CG, Ledoux JE, Pitkänen A (1996) Intrinsic connections of the rat amygdaloid complex: projections originating in the accessory basal nucleus. J Comp Neurol 374:291–313

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1983) The organization and biochemical specificity of afferent projections to the paraventricular and supraoptic nuclei. Prog Brain Res 60:19–29

    Article  PubMed  CAS  Google Scholar 

  • Schiltz CA, Bremer QZ, Landry CF, Kelley AE (2007) Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biol 5:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    Article  PubMed  CAS  Google Scholar 

  • Scicli AP, Petrovich GD, Swanson LW, Thompson RF (2004) Contextual fear conditioning is associated with lateralized expression of the immediate early gene c-fos in the central and basolateral amygdalar nuclei. Behav Neurosci 118:5–14

    Article  PubMed  Google Scholar 

  • Senn V et al (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428–437

    Article  PubMed  CAS  Google Scholar 

  • Sharpe MJ et al (2017) Lateral hypothalamic GABAergic neurons encode reward predictions that are relayed to the ventral tegmental area to regulate learning. Curr Biol 27:2089–2100 (e2085)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sherwood A, Holland PC, Adamantidis A, Johnson AW (2015) Deletion of melanin concentrating hormone receptor-1 disrupts overeating in the presence of food cues. Physiol Behav 152:402–407

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson T, Doyere V, Cain CK, LeDoux JE (2007) Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory. Neuropharmacology 52:215–227

    Article  PubMed  CAS  Google Scholar 

  • Simmons DM, Swanson LW (1993) The Nissl stain. In: Wouterlood FG (ed) Neuroscience protocols. Elsevier, Amsterdam, pp 93-050-012-001-093-050-012-007

    Google Scholar 

  • Simmons DM, Swanson LW (2009) Comparison of the spatial distribution of seven types of neuroendocrine neurons in the rat paraventricular nucleus: toward a global 3D model. J Comp Neurol 516:423–441

    Article  PubMed  Google Scholar 

  • Song Z, Levin BE, Stevens W, Sladek CD (2014) Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors. Am J Physiol Regul Integr Comp Physiol 306:R447–R456

    Article  CAS  Google Scholar 

  • Sotres-Bayon F, Quirk GJ (2010) Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol 20:231–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (2004) Brain maps III: structure of the rat brain. An atlas with printed and electronic templates for data, models, and schematics, 3rd rev. edn. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  • Swanson LW (2005) Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol 493:122–131

    Article  PubMed  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Article  PubMed  CAS  Google Scholar 

  • Travagli RA, Hermann GE, Browning KN, Rogers RC (2006) Brainstem circuits regulating gastric function. Ann Rev Physiol 68:279–305

    Article  CAS  Google Scholar 

  • Uher R et al (2004) Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry 161:1238–1246

    Article  PubMed  Google Scholar 

  • Vandesande F, Dierickx K (1975) Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretroy system of the rat. Cell Tissue Res 164:153–162

    Article  PubMed  CAS  Google Scholar 

  • Verhagen LA, Luijendijk MC, de Groot JW, van Dommelen LP, Klimstra AG, Adan RA, Roeling TA (2011) Anticipation of meals during restricted feeding increases activity in the hypothalamus in rats. Eur J Neurosci 34:1485–1491

    Article  PubMed  Google Scholar 

  • Vertes RP, Hoover WB (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212–237

    Article  PubMed  Google Scholar 

  • Wheeler DS, Wan S, Miller A, Angeli N, Adileh B, Hu W, Holland PC (2014) Role of lateral hypothalamus in two aspects of attention in associative learning. Eur J Neurosci 40:2359–2377

    Article  PubMed  PubMed Central  Google Scholar 

  • Wray S, Hoffman GE (1983) Organization and interrelationship of neuropeptides in the central amygdaloid nucleus of the rat. Peptides 4:525–541

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Cui J, Tan Z, Jiang C, Fogel R (2003) The central nucleus of the amygdala modulates gut-related neurons in the dorsal vagal complex in rats. J Physiol 553:1005–1018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zseli G, Vida B, Szilvasy-Szabo A, Toth M, Lechan RM, Fekete C (2017) Neuronal connections of the central amygdalar nucleus with refeeding-activated brain areas in rats. Brain Struct Funct 223(1):391–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucker I, Beery AK (2010) Males still dominate animal studies. Nature 465:690

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Elizabeth Choi, Megan Ebner, Michael Hobin, Songhon Hwang, Meghana Kuthyar, Heather Mayer, Jordan Newmark, Daniel Powell, Grant Schum, Anna Whitham, and John Young for technical assistance. A portion of the research reported here partially fulfilled the requirements for the degree of PhD awarded to CJR by Boston College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Petrovich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in this study involving animals were in accordance with the ethical standards of the Boston College Institutional Animal Care and Use Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reppucci, C.J., Petrovich, G.D. Neural substrates of fear-induced hypophagia in male and female rats. Brain Struct Funct 223, 2925–2947 (2018). https://doi.org/10.1007/s00429-018-1668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1668-3

Keywords

Navigation