Skip to main content

Advertisement

Log in

Commonly preserved and species-specific gyral folding patterns across primate brains

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Cortical folding pattern analysis is very important to understand brain organization and development. Since previous studies mostly focus on human brain cortex, the regularity and variability of cortical folding patterns across primate brains (macaques, chimpanzees and human) remain largely unknown. This paper presents a novel computational framework to identify common or unique gyral folding patterns in macaque, chimpanzee and human brains using magnetic resonance imaging (MRI) data. We quantitatively characterize gyral folding patterns via hinge numbers with cortical surfaces constructed from MRI data, and identify 6 common three-hinge gyral folds that exhibit consistent anatomical locations across these three species as well as 2 unique three hinges in macaque, 6 ones in chimpanzee and 14 ones in human. A novel morphology descriptor is then applied to classify three-hinge gyral folds, and the increasing complexity is identified among the species analyzed. This study may provide novel insights into the regularity and variability of the cerebral cortex from developmental perspective and may potentially facilitate novel neuroimage analyses such as cortical parcellation with correspondences across species in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barkovich AJ (2010) Current concepts of polymicrogyria. Neuroradiology 52:479–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton RA (2006) Primate brain evolution: integrating comparative, neurophysiological, and ethological data. Evol Anthropol Issues News Rev 15:224–236

    Article  Google Scholar 

  • Bayly PV, Taber LA, Kroenke CD (2014) Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater 29:568–581

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Buxhoeveden DP, Switala AE, Roy E, Litaker M, Casanova MF (2001) Morphological differences between minicolumns in human and nonhuman primate cortex. Am J Phys Anthropol 115:361–371

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang T, Guo L, Li K, Yu X, Li L, Hu X, Han J, Hu X, Liu T (2013) Coevolution of gyral folding and structural connection patterns in primate brains. Cereb Cortex 23:1208–1217

    Article  PubMed  Google Scholar 

  • Chen H, Yu X, Jiang X, Li K, Li L, Hu X, Han J, Guo L, Hu X, Liu T (2014) Evolutionarily-preserved consistent gyral folding patterns across primate brains. In: ISBI. IEEE. p 1218–1221

  • Dubois J, Benders M, Borradori-Tolsa C, Cachia A, Lazeyras F, Leuchter HV, Sizonenko SV, Warfield SK, Mangin JF, Hüppi PS (2008) Primary cortical folding in the human newborn: an early marker of later functional development. Brain A J Neurol 131:2028–2041

    Article  CAS  Google Scholar 

  • Dunbar RIM, Shultz S (2007) Evolution in the social brain. Science 317:1344–1347

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, Mohlberg H, Amunts K, Zilles K (2008) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980

    Article  PubMed  Google Scholar 

  • Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron 67:728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258

    Article  CAS  PubMed  Google Scholar 

  • Hardan AY, Jou RJ, Keshavan MS, Varma R, Minshew NJ (2004) Increased frontal cortical folding in autism: a preliminary MRI study. Psychiatry Res 131:263–268

    Article  PubMed  Google Scholar 

  • Harris JM, Whalley H, Yates S, Miller P, Johnstone EC, Lawrie SM (2004) Abnormal cortical folding in high-risk individuals: a predictor of the development of schizophrenia? Biol Psychiatry 56:182–189

    Article  PubMed  Google Scholar 

  • Heimann T, Meinzer H-P (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13:543–563

    Article  PubMed  Google Scholar 

  • Hilgetag CC, Barbas H (2005) Developmental mechanics of the primate cerebral cortex. Anat Embryol (Berl) 210:411–417

    Article  Google Scholar 

  • Hilgetag CC, Barbas H (2006) Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex. PLoS Comput Biol 2:e22

    Article  PubMed  PubMed Central  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106:2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honey CJ, Thivierge J-P, Sporns O (2010) Can structure predict function in the human brain? Neuroimage 52:766–776

    Article  PubMed  Google Scholar 

  • Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  • Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL. Neuroimage 62:782–790

    Article  PubMed  Google Scholar 

  • King R, Brown B, Hwang MSH, Jeon T, George AT (2010) Fractal dimension analysis of the cortical ribbon in mild Alzheimer’s disease. Neuroimage 53:471–479

    Article  PubMed  PubMed Central  Google Scholar 

  • Landrieu P, Husson B, Pariente D, Lacroix C (1998) MRI-neuropathological correlations in type 1 lissencephaly. Neuroradiology 40:173–176

    Article  CAS  PubMed  Google Scholar 

  • Li K, Guo L, Li G, Nie J, Faraco C, Cui G, Zhao Q, Miller LS, Liu T (2010) Gyral folding pattern analysis via surface profiling. Neuroimage 52:1202–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2014) Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 34:4228–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T (2011) A few thoughts on brain ROIs. Brain Imaging Behav 5:189–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu T, Nie J, Tarokh A, Guo L, Wong STC (2008) Reconstruction of central cortical surface from brain MRI images: method and application. Neuroimage 40:991–1002

    Article  PubMed  Google Scholar 

  • Luders E, Thompson PM, Narr KL, Toga AW, Jancke L, Gaser C (2006) A curvature-based approach to estimate local gyrification on the cortical surface. Neuroimage 29:1224–1230

    Article  CAS  PubMed  Google Scholar 

  • MacLeod CE, Zilles K, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in Hominoidea. J Hum Evol 44:401–429

    Article  PubMed  Google Scholar 

  • Mantini D, Gerits A, Nelissen K, Durand J-B, Joly O, Simone L, Sawamura H, Wardak C, Orban GA, Buckner RL, Vanduffel W (2011) Default mode of brain function in monkeys. J Neurosci 31:12954–12962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Neal J, Takahashi M, Silva M, Tiao G, Walsh CA, Sheen VL (2007) Insights into the gyrification of developing ferret brain by magnetic resonance imaging. J Anat 210:66–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie J, Guo L, Li G, Faraco C, Stephen Miller L, Liu T (2010) A computational model of cerebral cortex folding. J Theor Biol 264:467–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie J, Guo L, Li K, Wang Y, Chen G, Li L, Chen H, Deng F, Jiang X, Zhang T, Huang L, Faraco C, Zhang D, Guo C, Yap P-T, Hu X, Li G, Lv J, Yuan Y, Zhu D, Han J, Sabatinelli D, Zhao Q, Miller LS, Xu B, Shen P, Platt S, Shen D, Hu X, Liu T (2012) Axonal fiber terminations concentrate on gyri. Cereb Cortex 22:2831–2839

    Article  PubMed  Google Scholar 

  • Nishikuni K, Ribas GC (2013) Study of fetal and postnatal morphological development of the brain sulci: laboratory investigation. J Neurosurg: Pediatr 11(1):1–11

    Google Scholar 

  • Nordahl CW, Dierker D, Mostafavi I, Schumann CM, Rivera SM, Amaral DG, Van Essen DC (2007) Cortical folding abnormalities in autism revealed by surface-based morphometry. J Neurosci 27:11725–11735

    Article  CAS  PubMed  Google Scholar 

  • Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8:315–324

    Article  PubMed  Google Scholar 

  • Passingham R (2009) How good is the macaque monkey model of the human brain? Curr Opin Neurobiol 19:6–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira JB, Ibarretxe-Bilbao N, Marti MJ, Compta Y, Junqué C, Bargallo N, Tolosa E (2012) Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum Brain Mapp 33:2521–2534

    Article  PubMed  Google Scholar 

  • Richman DP, Stewart RM, Hutchinson JW, Caviness VS (1975) Mechanical model of brain convolutional development. Science 189:18–21

    Article  CAS  PubMed  Google Scholar 

  • Rilling JK (2006) Human and nonhuman primate brains: are they allometrically scaled versions of the same design? Evol Anthropol Issues. News Rev 15:65–77

    Google Scholar 

  • Rilling JK, Insel TR (1999) The primate neocortex in comparative perspective using magnetic resonance imaging. J Hum Evol 37:191–223

    Article  CAS  PubMed  Google Scholar 

  • Rilling JK, Seligman RA (2002) A quantitative morphometric comparative analysis of the primate temporal lobe. J Hum Evol 42:505–533

    Article  PubMed  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TEJ (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    Article  CAS  PubMed  Google Scholar 

  • Roland PE, Zilles K (1996) Functions and structures of the motor cortices in humans. Curr Opin Neurobiol 6:773–781

    Article  CAS  PubMed  Google Scholar 

  • Ronan L, Voets NL, Rua C, Alexanderbloch A, Hough M, Mackay CE, Crow TJ, James AC, Giedd JN, Fletcher PC (2013) Differential tangential expansion as a mechanism for cortical gyrification. Cereb Cortex 24:2219

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, van der Kouwe A, Jenkins BG, Dale AM, Fischl B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58:695–701

    Article  CAS  PubMed  Google Scholar 

  • Sallet PC, Elkis H, Alves TM, Oliveira JR, Sassi E, Campi de Castro C, Busatto GF, Gattaz WF (2003) Reduced cortical folding in schizophrenia: an MRI morphometric study. Am J Psychiatry 160:1606–1613

    Article  PubMed  Google Scholar 

  • Schoenemann PT (2006) Evolution of the size and functional areas of the human brain. Annu Rev Anthropol 35:379–406

    Article  Google Scholar 

  • Smaers JB, Soligo C (2013) Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc Biol Sci 280:20130269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smart IH, McSherry GM (1986a) Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J Anat 146:141–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smart IH, McSherry GM (1986b) Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes. J Anat 147:27–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tallinen T, Chung JY, Rousseau F, Girard N, Lefevre J, Mahadevan L (2016) On the growth and form of cortical convolutions. Nat Phys 12:588–593

    Article  CAS  Google Scholar 

  • Thompson PM, Hayashi KM, Sowell ER, Gogtay N, Giedd JN, Rapoport JL, de Zubicaray GI, Janke AL, Rose SE, Semple J, Doddrell DM, Wang Y, van Erp TGM, Cannon TD, Toga AW (2004) Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. Neuroimage 23(Suppl):S2–S18

    Article  PubMed  Google Scholar 

  • Toro R (2012) On the Possible Shapes of the Brain. Evol Biol 39:600–612

    Article  Google Scholar 

  • Toro R, Burnod Y (2005) A morphogenetic model for the development of cortical convolutions. Cereb Cortex 15:1900–1913

    Article  PubMed  Google Scholar 

  • Tortori-Donati P, Rossi A, Biancheri R (2005) Brain Malformations. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Van Essen DC (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313

    Article  PubMed  Google Scholar 

  • Van Essen DC (2002) Surface-based atlases of cerebellar cortex in the human, macaque, and mouse. Ann N Y Acad Sci 978:468–479

    Article  PubMed  Google Scholar 

  • Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RBH, Bakircioglu M, Miller MI (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41:1359–1378

    Article  PubMed  Google Scholar 

  • Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, Chang A, Chen L, Corbetta M, Curtiss SW, Della Penna S, Feinberg D, Glasser MF, Harel N, Heath AC, Larson-Prior L, Marcus D, Michalareas G, Moeller S, Oostenveld R, Petersen SE, Prior F, Schlaggar BL, Smith SM, Snyder AZ, Xu J, Yacoub E (2012) The human connectome project: a data acquisition perspective. Neuroimage 62:2222–2231

    Article  PubMed  PubMed Central  Google Scholar 

  • Welker W (1990) Why does cerebral cortex fissure and fold?. A review of determinants of gyri and sulci, Cereb Cortex, p 8

    Google Scholar 

  • Yeo BTT, Yu P, Grant PE, Fischl B, Golland P (2008) Shape Analysis with Overcomplete Spherical Wavelets. MICCAI LNCS Lect Notes Comput Sci 5241:468–476

    Article  Google Scholar 

  • Yu P, Han X, Ségonne F, Pienaar R, Buckner RL, Golland P, Grant PE, Fischl B (2006) Cortical Surface Shape Analysis Based on Spherical Wavelet Transformation. Conf Comput Vis Pattern Recognit Workshops

  • Yu X, Chen H, Zhang T, Hu X, Guo L, Liu T (2013) Joint analysis of gyral folding and fiber shape patterns. In: ISBI. IEEE. p 85–88

  • Zhang D, Guo L, Zhu D, Li K, Li L, Chen H, Zhao Q, Hu X, Liu T (2013) Diffusion tensor imaging reveals evolution of primate brain architectures. Brain Struct Funct 218:1429–1450

    Article  PubMed  Google Scholar 

  • Zilles K, Armstrong E, Schleicher A, Kretschmann H-J (1988) The human pattern of gyrification in the cerebral cortex. Anat Embryol (Berl) 179:173–179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T Liu was supported by the NIH Career Award EB006878 (2007–2012), NIH R01 HL087923-03S2 (2010–2012), NIH R01 DA033393 (2012–2017), NIH R01 AG-042599 (2013–2018), NSF CAREER Award IIS-1149260 (2012-2017), NSF CBET-1302089 (2013–2016), NSF BCS-1439051 (2014–2017) and NSF DBI-1564736 (2016–2019). T Zhang was supported by NSFC 31500798, the fundamental research funds for the central universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianming Liu.

Additional information

X. Li, H. Chen and T. Zhang are co-first authors.

X. Hu and T. Liu are joint corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, H., Zhang, T. et al. Commonly preserved and species-specific gyral folding patterns across primate brains. Brain Struct Funct 222, 2127–2141 (2017). https://doi.org/10.1007/s00429-016-1329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1329-3

Keywords

Navigation