Skip to main content
Log in

Astrocytic and neuronal localization of kynurenine aminotransferase-2 in the adult mouse brain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

During catabolism of tryptophan through the kynurenine (KYN) pathway, several endogenous metabolites with neuromodulatory properties are produced, of which kynurenic acid (KYNA) is one of the highest significance. The causal role of altered KYNA production has been described in several neurodegenerative and neuropsychiatric disorders (e.g., Parkinson’s disease, Huntington’s disease, schizophrenia) and therefore kynurenergic manipulation with the aim of therapy has recently been proposed. Conventionally, KYNA is produced from its precursor l-KYN with the aid of the astrocytic kynurenine aminotransferase-2 (KAT-2) in the murine brain. Although the mouse is a standard therapeutic research organism, the presence of KAT-2 in mice has not been described in detail. This study demonstrates the presence of kat-2 mRNA and protein throughout the adult C57Bl6 mouse brain. In addition to the former expression data from the rat, we found prominent KAT-2 expression not only in the astrocyte, but also in neurons in several brain regions (e.g., hippocampus, substantia nigra, striatum, and prefrontal cortex). A significant number of the KAT-2 positive neurons were positive for GAD67; the presence of the KAT-2 enzyme we could also demonstrate in mice brain homogenate and in cells overexpressing recombinant mouse KAT-2 protein. This new finding attributes a new role to interneuron-derived KYNA in neuronal network operation. Furthermore, our results suggest that the thorough investigation of the spatio-temporal expression pattern of the relevant enzymes of the KYN pathway is a prerequisite for developing and understanding the pharmacological and transgenic murine models of kynurenergic manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albuquerque EX, Schwarcz R (2013) Kynurenic acid as an antagonist of alpha7 nicotinic acetylcholine receptors in the brain: facts and challenges. Biochem Pharmacol 85:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Yu P, Arruda EZ, Almeida LE, Guidetti P, Fawcett WP, Sapko MT, Randall WR, Schwarcz R, Tagle DA, Albuquerque EX (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Todd SW, Randall WR, Lane MV, Albuquerque EX (2015) Functional G-protein-coupled receptor 35 is expressed by neurons in the CA1 field of the hippocampus. Biochem Pharmacol 93:506–518

    Article  CAS  PubMed  Google Scholar 

  • Ben-Gigi L, Sweetat S, Besser E, Fellig Y, Wiederhold T, Polakiewicz RD, Behar O (2015) Astrogliosis induced by brain injury is regulated by Sema4B phosphorylation(123). eNeuro 2(3). doi:10.1523/ENEURO.0078-14.2015

  • Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, Sili M, Moroni F, Mannaioni G (2013) GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS ONE 8:e82180

    Article  PubMed  PubMed Central  Google Scholar 

  • Birch PJ, Grossman CJ, Hayes AG (1988) Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol 154:85–87

    Article  CAS  PubMed  Google Scholar 

  • Cherian AK, Gritton H, Johnson DE, Young D, Kozak R, Sarter M (2014) A systemically-available kynurenine aminotransferase II (KAT II) inhibitor restores nicotine-evoked glutamatergic activity in the cortex of rats. Neuropharmacology 82:41–48

    Article  PubMed Central  Google Scholar 

  • Dounay AB, Tuttle JB, Verhoest PR (2015) Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J Med Chem 58:8762–8782

    Article  CAS  PubMed  Google Scholar 

  • Du F, Schmidt W, Okuno E, Kido R, Kohler C, Schwarcz R (1992) Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. J Comp Neurol 321:477–487

    Article  CAS  PubMed  Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98

    Article  CAS  PubMed  Google Scholar 

  • Gal EM, Sherman AD (1980) l-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res 5:223–239

    Article  CAS  PubMed  Google Scholar 

  • Grunze HC, Rainnie DG, Hasselmo ME, Barkai E, Hearn EF, McCarley RW, Greene RW (1996) NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 16:2034–2043

    CAS  PubMed  Google Scholar 

  • Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007a) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111

    Article  CAS  PubMed  Google Scholar 

  • Guidetti P, Hoffman GE, Melendez-Ferro M, Albuquerque EX, Schwarcz R (2007b) Astrocytic localization of kynurenine aminotransferase II in the rat brain visualized by immunocytochemistry. Glia 55:78–92

    Article  PubMed  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78:842–853

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27:12884–12892

    Article  CAS  PubMed  Google Scholar 

  • Gulaj E, Pawlak K, Bien B, Pawlak D (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55:204–211

    Article  CAS  PubMed  Google Scholar 

  • Homayoun H, Moghaddam B (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27:11496–11500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh JH, Stein DJ, Howells FM (2014) The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci 8:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayawickrama GS, Sadig RR, Sun G, Nematollahi A, Nadvi NA, Hanrahan JR, Gorrell MD, Church WB (2015) Kynurenine aminotransferases and the prospects of inhibitors for the treatment of schizophrenia. Curr Med Chem 22:2902–2918

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Okuno E, Kido R, Kapoor V (1997) Immuno-localization of kynurenine aminotransferase (KAT) in the rat medulla and spinal cord. NeuroReport 8:3619–3623

    Article  CAS  PubMed  Google Scholar 

  • Kawai H, Zago W, Berg DK (2002) Nicotinic alpha 7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins. J Neurosci 22:7903–7912

    CAS  PubMed  Google Scholar 

  • Kegel ME, Bhat M, Skogh E, Samuelsson M, Lundberg K, Dahl ML, Sellgren C, Schwieler L, Engberg G, Schuppe-Koistinen I, Erhardt S (2014) Imbalanced kynurenine pathway in schizophrenia. Int J Tryptophan Res 7:15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindy MS, Bhat AN, Bhat NR (1992) Transient ischemia stimulates glial fibrillary acid protein and vimentin gene expression in the gerbil neocortex, striatum and hippocampus. Brain Res Mol Brain Res 13:199–206

    Article  CAS  PubMed  Google Scholar 

  • Kozak R, Campbell BM, Strick CA, Horner W, Hoffmann WE, Kiss T, Chapin DS, McGinnis D, Abbott AL, Roberts BM, Fonseca K, Guanowsky V, Young DA, Seymour PA, Dounay A, Hajos M, Williams GV, Castner SA (2014) Reduction of brain kynurenic acid improves cognitive function. J Neurosci 34:10592–10602

    Article  PubMed  Google Scholar 

  • Linderholm KR, Skogh E, Olsson SK, Dahl ML, Holtze M, Engberg G, Samuelsson M, Erhardt S (2012) Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia. Schizophr Bull 38:426–432

    Article  PubMed  Google Scholar 

  • Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141

    Article  CAS  PubMed  Google Scholar 

  • Meier TB, Drevets WC, Wurfel BE, Ford BN, Morris HM, Victor TA, Bodurka J, Teague TK, Dantzer R, Savitz J (2016) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 53:39–48

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42:1702–1706

    Article  CAS  PubMed  Google Scholar 

  • Okuno E, Du F, Ishikawa T, Tsujimoto M, Nakamura M, Schwarcz R, Kido R (1990) Purification and characterization of kynurenine-pyruvate aminotransferase from rat kidney and brain. Brain Res 534:37–44

    Article  CAS  PubMed  Google Scholar 

  • Petralia RS (2012) Distribution of extrasynaptic NMDA receptors on neurons. Sci World J 2012:267120

    Article  Google Scholar 

  • Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ, Schwarcz R (2010) Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35:1734–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Povysheva NV, Johnson JW (2012) Tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons. J Neurophysiol 107:2232–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott C, Weeks AM, Staley KJ, Partin KM (2006) Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 402:108–112

    Article  CAS  PubMed  Google Scholar 

  • Rejdak R, Zarnowski T, Turski WA, Okuno E, Kocki T, Zagorski Z, Kohler K, Guenther E, Zrenner E (2001) Presence of kynurenic acid and kynurenine aminotransferases in the inner retina. NeuroReport 12:3675–3678

    Article  CAS  PubMed  Google Scholar 

  • Riebe I, Seth H, Culley G, Dosa Z, Radi S, Strand K, Frojd V, Hanse E (2016) Tonically active NMDA receptors—a signalling mechanism critical for interneuronal excitability in the CA1 stratum radiatum. Eur J Neurosci 43:169–178

    Article  PubMed  Google Scholar 

  • Roberts RC, Du F, McCarthy KE, Okuno E, Schwarcz R (1992) Immunocytochemical localization of kynurenine aminotransferase in the rat striatum: a light and electron microscopic study. J Comp Neurol 326:82–90

    Article  CAS  PubMed  Google Scholar 

  • Rzeski W, Kocki T, Dybel A, Wejksza K, Zdzisinska B, Kandefer-Szerszen M, Turski WA, Okuno E, Albrecht J (2005) Demonstration of kynurenine aminotransferases I and II and characterization of kynurenic acid synthesis in cultured cerebral cortical neurons. J Neurosci Res 80:677–682

    Article  CAS  PubMed  Google Scholar 

  • Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530

    Article  CAS  PubMed  Google Scholar 

  • Speciale C, Hares K, Schwarcz R, Brookes N (1989) High-affinity uptake of l-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J Neurosci 9:2066–2072

    CAS  PubMed  Google Scholar 

  • Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623

    Article  CAS  PubMed  Google Scholar 

  • Turski WA, Gramsbergen JB, Traitler H, Schwarcz R (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to l-kynurenine. J Neurochem 52:1629–1636

    Article  CAS  PubMed  Google Scholar 

  • Uwai Y, Hara H, Iwamoto K (2013) Transport of kynurenic acid by rat organic anion transporters rOAT1 and rOAT3: species difference between human and rat in OAT1. Int J Tryptophan Res 6:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Di Prospero NA, Sapko MT, Cai T, Chen A, Melendez-Ferro M, Du F, Whetsell WO Jr, Guidetti P, Schwarcz R, Tagle DA (2004) Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Mol Cell Biol 24:6919–6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarei MM, Radcliffe KA, Chen D, Patrick JW, Dani JA (1999) Distributions of nicotinic acetylcholine receptor alpha7 and beta2 subunits on cultured hippocampal neurons. Neuroscience 88:755–764

    Article  CAS  PubMed  Google Scholar 

  • Zmarowski A, Wu HQ, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, Bruno JP (2009) Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci 29:529–538

    Article  CAS  PubMed  Google Scholar 

  • Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grant OTKA K105077 and co-financed by the EUROHEADPAIN FP7-Health 2013-Innovation; Grant No. 602633, and Grant by MTA-SZTE Neuroscience Research Group. LG was a fellow in the JSPS Fellowship Programs for Overseas Researchers PE15040. Thanks are due to Dr. Mónika Kiricsi for her assistance to membrane scanning at the Department of Biochemistry and Molecular Biology, SZTE. Thanks are due to Matthew Higginson for grammar proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Gellért.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herédi, J., Berkó, A.M., Jankovics, F. et al. Astrocytic and neuronal localization of kynurenine aminotransferase-2 in the adult mouse brain. Brain Struct Funct 222, 1663–1672 (2017). https://doi.org/10.1007/s00429-016-1299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1299-5

Keywords

Navigation