Skip to main content
Log in

Activation of group I metabotropic glutamate receptors regulates the excitability of rat retinal ganglion cells by suppressing Kir and I h

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Group I metabotropic glutamate receptor (mGluR I) activation exerts a slow postsynaptic excitatory effect in the CNS. Here, the issues of whether and how this receptor is involved in regulating retinal ganglion cell (RGC) excitability were investigated in retinal slices using patch-clamp techniques. Under physiological conditions, RGCs displayed spontaneous firing. Extracellular application of LY367385 (10 µM)/MPEP (10 µM), selective mGluR1 and mGluR5 antagonists, respectively, significantly reduced the firing frequency, suggesting that glutamate endogenously released from bipolar cells constantly modulates RGC firing. DHPG (10 µM), an mGluR I agonist, significantly increased the firing and caused depolarization of the cells, which were reversed by LY367385, but not by MPEP, suggesting the involvement of the mGluR1 subtype. Intracellular Ca2+-dependent PI-PLC/PKC and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling pathways mediated the DHPG-induced effects. In the presence of cocktail synaptic blockers (CNQX, D-AP5, bicuculline, and strychnine), which terminated the spontaneous firing in both ON and OFF RGCs, DHPG still induced depolarization and triggered the cells to fire. The DHPG-induced depolarization could not be blocked by TTX. In contrast, Ba2+, an inwardly rectifying potassium channel (Kir) blocker, and Cs+ and ZD7288, hyperpolarization-activated cation channel (I h) blockers, mimicked the effect of DHPG. Furthermore, in the presence of Ba2+/ZD7288, DHPG did not show further effects. Moreover, Kir and I h currents could be recorded in RGCs, and extracellular application of DHPG indeed suppressed these currents. Our results suggest that activation of mGluR I regulates the excitability of rat RGCs by inhibiting Kir and I h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ACs:

Amacrine cells

ACSF:

Artificial cerebral spinal fluid

BCs:

Bipolar cells

Bis IV:

Bisindolylmaleimide IV

CaMKII:

Calcium/calmodulin-dependent protein kinase II

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione

CNS:

Central nervous system

CV:

Coefficient of variation

D-APV:

d-(-)-2-amino-5-phosphonopentanoic acid

DHPG:

(S)-3,5-Dihydroxyphenylglycine

DMSO:

Dimethyl sulfoxide

EGTA:

Ethylene glycol-bis (β-aminoethyl ether) N,N,N′,N′-tetraacetic acid

EPSCs:

Excitatory postsynaptic currents

GCL:

Ganglion cell layer

HEPES:

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

I h :

Hyperpolarization-activated cation channels

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

ISI:

Interspike interval

Kir:

Inwardly rectifying potassium channels

OPL:

Outer plexiform layer

ONL:

Outer nuclear layer

PB:

Phosphate buffer

PBS:

Phosphate buffer saline

PFA:

Paraformaldehyde

PKC:

Protein kinase C

PLC:

Phospholipase C

mGluRs:

Metabotropic glutamate receptors

RGCs:

Retinal ganglion cells

TTX:

Tetrodotoxin

References

  • Akopian A, Witkovsky P (1996) Activation of metabotropic glutamate receptors decreases a high-threshold calcium current in spiking neurons of the Xenopus retina. Vis Neurosci 13:549–557

    Article  CAS  PubMed  Google Scholar 

  • Awatramani GB, Slaughter MM (2001) Intensity-dependent, rapid activation of presynaptic metabotropic glutamate receptors at a central synapse. J Neurosci 21:741–749

    CAS  PubMed  Google Scholar 

  • Bastian J, Nguyenkim J (2001) Dendritic modulation of burst-like firing in sensory neurons. J Neurophysiol 85:10–22

    CAS  PubMed  Google Scholar 

  • Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    Article  CAS  PubMed  Google Scholar 

  • Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885. doi:10.1152/physrev.00029.2008

    Article  CAS  PubMed  Google Scholar 

  • Brager DH, Johnston D (2007) Plasticity of intrinsic excitability during long-term depression is mediated through mGluR-dependent changes in I(h) in hippocampal CA1 pyramidal neurons. J Neurosci 27:13926–13937

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Pourcho RG (1999) Localization of metabotropic glutamate receptors mGluR1alpha and mGluR2/3 in the cat retina. J Comp Neurol 407:427–437

    Article  CAS  PubMed  Google Scholar 

  • Carlier E, Sourdet V, Boudkkazi S, Déglise P, Ankri N, Fronzaroli-Molinieres L, Debanne D (2006) Metabotropic glutamate receptor subtype 1 regulates sodium currents in rat neocortical pyramidal neurons. J Physiol (Lond) 577:141–154

    Article  CAS  Google Scholar 

  • Chen L, Yang XL (2007) Hyperpolarization-activated cation current is involved in modulation of the excitability of rat retinal ganglion cells by dopamine. Neuroscience 150:299–308

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yu YC, Zhao JW, Yang XL (2004) Inwardly rectifying potassium channels in rat retinal ganglion cells. Eur J Neurosci 20:956–964

    Article  PubMed  Google Scholar 

  • Choe ES, Wang JQ (2001) Group I metabotropic glutamate receptors control phosphorylation of CREB, Elk-1 and ERK via a CaMKII-dependent pathway in rat striatum. Neurosci Lett 313:129–132

    Article  CAS  PubMed  Google Scholar 

  • Dong LD, Gao F, Wang XH, Miao Y, Wang SY, Wu Y, Li F, Wu J, Cheng XL, Sun XH, Yang XL, Wang Z (2015) GluA2 trafficking is involved in apoptosis of retinal ganglion cells induced by activation of EphB/EphrinB reverse signaling in a rat chronic ocular hypertension model. J Neurosci 35:5409–5421. doi:10.1523/JNEUROSCI.4376-14.2015

    Article  CAS  PubMed  Google Scholar 

  • Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 23:80–88

    Article  CAS  PubMed  Google Scholar 

  • Famiglietti EV Jr, Kolb H (1976) Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science 194:193–195

    Article  PubMed  Google Scholar 

  • Guo L, Salt TE, Maass A, Luong V, Moss SE, Fitzke FW, Cordeiro MF (2006) Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Invest Ophthalmol Vis Sci 47:626–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannan AJ, Blakemore C, Katsnelson A, Vitalis T, Huber KM, Bear M, Roder J, Kim D, Shin HS, Kind PC (2001) PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 4:282–288

    Article  CAS  PubMed  Google Scholar 

  • Hartveit E, Brandstätter JH, Enz R, Wässle H (1995) Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. Eur J Neurosci 7:1472–1483

    Article  CAS  PubMed  Google Scholar 

  • Hauser JL, Edson EB, Hooks BM, Chen C (2013) Metabotropic glutamate receptors and glutamate transporters shape transmission at the developing retinogeniculate synapse. J Neurophysiol 109:113–123. doi:10.1152/jn.00897.2012

    Article  CAS  PubMed  Google Scholar 

  • Higgs MH, Romano C, Lukasiewicz PD (2002) Presynaptic effects of group III metabotropic glutamate receptors on excitatory synaptic transmission in the retina. Neuroscience 115:163–172

    Article  CAS  PubMed  Google Scholar 

  • Ji M, Miao Y, Dong LD, Chen J, Mo XF, Jiang SX, Sun XH, Yang XL, Wang Z (2012) Group I mGluR-mediated inhibition of Kir channels contributes to retinal Muller cell gliosis in a rat chronic ocular hypertension model. J Neurosci 32:12744–12755. doi:10.1523/JNEUROSCI.1291-12.2012

    Article  CAS  PubMed  Google Scholar 

  • Kase D, Imoto K (2012) The role of HCN channels on membrane excitability in the nervous system. J Signal Transduct 2012:619747. doi:10.1155/2012/619747

    Article  PubMed  PubMed Central  Google Scholar 

  • Koulen P, Kuhn R, Wässle H, Brandstätter JH (1997) Group I metabotropic glutamate receptors mGluR1alpha and mGluR5a: localization in both synaptic layers of the rat retina. J Neurosci 17:2200–2211

    CAS  PubMed  Google Scholar 

  • Koyama S, Kanemitsu Y, Weight FF (2005) Spontaneous activity and properties of two types of principal neurons from the ventral tegmental area of rat. J Neurophysiol 93:3282–3293

    Article  PubMed  Google Scholar 

  • Lam YW, Sherman SM (2013) Activation of both Group I and Group II metabotropic glutamatergic receptors suppress retinogeniculate transmission. Neuroscience 242:78–84. doi:10.1016/j.neuroscience.2013.03.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Ishida AT (2007) Ih without Kir in adult rat retinal ganglion cells. J Neurophysiol 97:3790–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488–1500

    Article  CAS  PubMed  Google Scholar 

  • Lüscher C, Huber KM (2010) Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65:445–459. doi:10.1016/j.neuron.2010.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624

    CAS  PubMed  Google Scholar 

  • Magee JC (1999) Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2:848

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Liu W (2000) Fundamental GABAergic amacrine cell circuitries in the retina: nested feedback, concatenated inhibition, and axosomatic synapses. J Comp Neurol 425:560–582

    Article  CAS  PubMed  Google Scholar 

  • Margolis DJ, Detwiler PB (2007) Different mechanisms generate maintained activity in ON and OFF retinal ganglion cells. J Neurosci 27:5994–6005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra P, Miller RF (2007a) Normal and rebound impulse firing in retinal ganglion cells. Vis Neurosci 24:79–90

    Article  PubMed  Google Scholar 

  • Mitra P, Miller RF (2007b) Mechanism underlying rebound excitation in retinal ganglion cells. Vis Neurosci 24:709–731

    Article  PubMed  Google Scholar 

  • Mizuno T, Kanazawa I, Sakurai M (2001) Differential induction of LTP and LTD is not determined solely by instantaneous calcium concentration: an essential involvement of a temporal factor. Eur J Neurosci 14:701–708

    Article  CAS  PubMed  Google Scholar 

  • Mockett BG, Guévremont D, Wutte M, Hulme SR, Williams JM, Abraham WC (2011) Calcium/calmodulin-dependent protein kinase II mediates group I metabotropic glutamate receptor-dependent protein synthesis and long-term depression in rat hippocampus. J Neurosci 31:7380–7391. doi:10.1523/JNEUROSCI.6656-10.2011

    Article  CAS  PubMed  Google Scholar 

  • Morikawa H, Khodakhah K, Williams JT (2003) Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons. J Neurosci 23:149–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M (1998) Glutamate receptors: brain function and signal transduction. Brain Res Brain Res Rev 26:230–235

    Article  PubMed  Google Scholar 

  • Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041. doi:10.1016/j.neuropharm.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  • Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61:421–427

    Article  CAS  PubMed  Google Scholar 

  • Oi H, Partida GJ, Lee SC, Ishida AT (2008) HCN4-like immunoreactivity in rat retinal ganglion cells. Vis Neurosci 25:95–102. doi:10.1017/S095252380808005X

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang JJ, Gao F, Wu SM (2003) Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF alpha ganglion cells in the mouse retina. J Neurosci 23:6063–6073

    CAS  PubMed  Google Scholar 

  • Partida GJ, Stradleigh TW, Ogata G, Godzdanker I, Ishida AT (2012) Thy1 associates with the cation channel subunit HCN4 in adult rat retina. Invest Ophthalmol Vis Sci 53:1696–1703. doi:10.1167/iovs.11-9307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng YW, Blackstone CD, Huganir RL, Yau KW (1995) Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66:483–497

    Article  CAS  PubMed  Google Scholar 

  • Pin JP, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34:1–26

    Article  CAS  PubMed  Google Scholar 

  • Protti DA, Gerschenfeld HM, Llano I (1997) GABAergic and glycinergic IPSCs in ganglion cells of rat retinal slices. J Neurosci 17:6075–6085

    CAS  PubMed  Google Scholar 

  • Rothe T, Bigl V, Grantyn R (1994) Potentiating and depressant effects of metabotropic glutamate receptor agonists on high-voltage-activated calcium currents in cultured retinal ganglion neurons from postnatal mice. Pflugers Arch 426:161–170

    Article  CAS  PubMed  Google Scholar 

  • Salt TE, Cordeiro MF (2006) Glutamate excitotoxicity in glaucoma: throwing the baby out with the bathwater? Eye 20:730–731

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Lipton SA (2008) Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma. Prog Brain Res 173:495–510. doi:10.1016/S0079-6123(08)01134-5

    Article  CAS  PubMed  Google Scholar 

  • Shah MM, Hammond RS, Hoffman DA (2010) Dendritic ion channel trafficking and plasticity. Trends Neurosci 33:307–316. doi:10.1016/j.tins.2010.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Slaughter MM (1998) Metabotropic and ionotropic glutamate receptors regulate calcium channel currents in salamander retinal ganglion cells. J Physiol 510:815–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sladeczek F, Pin JP, Récasens M, Bockaert J, Weiss S (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317:717–719

    Article  CAS  PubMed  Google Scholar 

  • Sohn JW, Yu WJ, Lee D, Shin HS, Lee SH, Ho WK (2011) Cyclic ADP ribose-dependent Ca2+ release by group I metabotropic glutamate receptors in acutely dissociated rat hippocampal neurons. PLoS One 6:e26625. doi:10.1371/journal.pone.0026625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stradleigh TW, Ogata G, Partida GJ, Oi H, Greenberg KP, Krempely KS, Ishida AT (2011) Colocalization of hyperpolarization-activated, cyclic nucleotide-gated channel subunits in rat retinal ganglion cells. J Comp Neurol 519:2546–2573. doi:10.1002/cne.22638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18:3501–3510

    CAS  PubMed  Google Scholar 

  • Sugiyama H, Ito I, Hirono C (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325:531–533

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Ishida AT (1996) Transient and sustained depolarization of retinal ganglion cells by Ih. J Neurophysiol 75:1932–1943

    CAS  PubMed  Google Scholar 

  • Takumi Y, Matsubara A, Rinvik E, Ottersen OP (1999) The arrangement of glutamate receptors in excitatory synapses. Ann N Y Acad Sci 868:474–482

    Article  CAS  PubMed  Google Scholar 

  • Tehrani A, Wheeler-Schilling TH, Guenther E (2000) Coexpression patterns of mGLuR mRNAs in rat retinal ganglion cells: a single-cell RT-PCR study. Invest Ophthalmol Vis Sci 41:314–319

    CAS  PubMed  Google Scholar 

  • Tsay D, Dudman JT, Siegelbaum SA (2007) HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56:1076–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigh J, Lasater EM (2003) Intracellular calcium release resulting from mGluR1 receptor activation modulates GABAA currents in wide-field retinal amacrine cells: a study with caffeine. Eur J Neurosci 17:2237–2248

    Article  PubMed  Google Scholar 

  • Wang XH, Wu Y, Yang XF, Miao Y, Zhang CQ, Dong LD, Yang XL, Wang Z (2016) Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina. Brain Struct Funct 221:301–316. doi:10.1007/s00429-014-0908-4

    Article  CAS  PubMed  Google Scholar 

  • Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    Article  PubMed  Google Scholar 

  • Wässle H, Boycott BB (1991) Functional architecture of the mammalian retina. Physiol Rev 71:447–480

    PubMed  Google Scholar 

  • Yang XL (2004) Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 73:127–150

    Article  CAS  PubMed  Google Scholar 

  • Yang XF, Miao Y, Ping Y, Wu HJ, Yang XL, Wang Z (2011) Melatonin inhibits tetraethylammonium-sensitive potassium channels of rod ON type bipolar cells via MT2 receptors in rat retina. Neuroscience 173:19–29. doi:10.1016/j.neuroscience.2010.11.028

    Article  CAS  PubMed  Google Scholar 

  • Yoshida M, Fransén E, Hasselmo ME (2008) mGluR-dependent persistent firing in entorhinal cortex layer III neurons. Eur J Neurosci 28:1116–1126. doi:10.1111/j.1460-9568.2008.06409.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Daniels BA, Baldridge WH (2009) Slow excitation of cultured rat retinal ganglion cells by activating group I metabotropic glutamate receptors. J Neurophysiol 102:3728–3739. doi:10.1152/jn.00650.2009

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Zhong YM, Yang XL (2009) TASK-2 is expressed in proximal neurons in the rat retina. NeuroReport 20:946–950. doi:10.1097/WNR.0b013e32832c7e50

    Article  CAS  PubMed  Google Scholar 

  • Zhang XJ, Liu LL, Jiang SX, Zhong YM, Yang XL (2011) Activation of the sigma receptor 1 suppresses NMDA receptors in rat retinal ganglion cells. Neuroscience 177:12–22. doi:10.1016/j.neuroscience.2010.12.064

    Article  CAS  PubMed  Google Scholar 

  • Zhao WJ, Zhang M, Miao Y, Yang XL, Wang Z (2010) Melatonin potentiates glycine currents through a PLC/PKC signaling pathway in rat retinal ganglion cells. J Physiol (Lond) 588:2605–2619. doi:10.1113/jphysiol.2010.187641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Program of Basic Research of China (2013CB835100), the National Natural Science Foundation of China (31271173; 31470054; 81430007), the Key Research Program of Science and Technology Commissions of Shanghai Municipality (13DJ1400302), and the Natural Science Foundation of Shanghai, China (14ZR1402200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Huai Sun or Zhongfeng Wang.

Additional information

Q. Li and P. Cui contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Cui, P., Miao, Y. et al. Activation of group I metabotropic glutamate receptors regulates the excitability of rat retinal ganglion cells by suppressing Kir and I h . Brain Struct Funct 222, 813–830 (2017). https://doi.org/10.1007/s00429-016-1248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1248-3

Keywords

Navigation