Skip to main content
Log in

Cortical grey matter content is associated with both age and bimanual performance, but is not observed to mediate age-related behavioural decline

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Declines in both cortical grey matter and bimanual coordination performance are evident in healthy ageing. However, the relationship between ageing, bimanual performance, and grey matter loss remains unclear, particularly across the whole adult lifespan. Therefore, participants (N = 93, range 20–80 years) performed a complex Bimanual Tracking Task, and structural brain images were obtained using magnetic resonance imaging. Analyses revealed that age correlated negatively with task performance. Voxel-based morphometry analysis revealed that age was associated with grey matter declines in task-relevant cortical areas and that grey matter in these areas was negatively associated with task performance. However, no evidence for a mediating effect of grey matter in age-related bimanual performance decline was observed. We propose a new hypothesis that functional compensation may account for the observed absence of mediation, which is in line with the observed pattern of increased inter-individual variance in performance with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821. doi:10.1006/nimg.2000.0582

    Article  CAS  PubMed  Google Scholar 

  • Bangert AS, Reuter-Lorenz PA, Walsh CM, Schachter AB, Seidler RD (2010) Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia 48:1165–1170. doi:10.1016/j.neuropsychologia.2009.11.013

    Article  PubMed  Google Scholar 

  • Beets IA, Gooijers J, Boisgontier MP, Pauwels L, Coxon JP, Wittenberg G, Swinnen SP (2014) Reduced neural differentiation between feedback conditions after bimanual coordination training with and without augmented visual feedback. Cereb Cortex. doi:10.1093/cercor/bhu005

    PubMed  Google Scholar 

  • Brett M, Anton JL, valabregue R, Poline JB (2002) Region of interest analysis using an SPM toolbox [abstract]. Presented at the 8th international conference on functional mapping of the human brain, Sendai, Japan, 2–6 June 2002. Available on CD-ROM in NeuroImage, vol 16, No 2, abstract 497

  • Courchesne E et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682. doi:10.1148/radiology.216.3.r00au37672

    Article  CAS  PubMed  Google Scholar 

  • Dijkerman HC, de Haan EH (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30:189–201. doi:10.1017/S0140525X07001392 (discussion 201–139)

    Article  PubMed  Google Scholar 

  • Ferreira D et al (2013) Cognitive decline is mediated by gray matter changes during middle-age. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2013.10.095

    PubMed  Google Scholar 

  • Goble DJ, Coxon JP, Wenderoth N, Van Impe A, Swinnen SP (2009) Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci Biobehav Rev 33:271–278. doi:10.1016/j.neubiorev.2008.08.012

    Article  PubMed  Google Scholar 

  • Goble DJ, Coxon JP, Van Impe A, De Vos J, Wenderoth N, Swinnen SP (2010) The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum Brain Mapp 31:1281–1295. doi:10.1002/hbm.20943

    PubMed  Google Scholar 

  • Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36. doi:10.1006/nimg.2001.0786

    Article  CAS  PubMed  Google Scholar 

  • Gunning-Dixon FM, Brickman AM, Cheng JC, Alexopoulos GS (2009) Aging of cerebral white matter: a review of MRI findings. Int J Geriatr Psychiatry 24:109–117. doi:10.1002/gps.2087

    Article  PubMed  PubMed Central  Google Scholar 

  • Hafkemeijer A, Altmann-Schneider I, de Craen AJ, Slagboom PE, van der Grond J, Rombouts SA (2014) Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell 13:1068–1074. doi:10.1111/acel.12271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes AF (2013) Introduction to mediation, moderation, and conditional process analysis; a regression-based approach. Methodology in the social sciences. The Guilford Press, New York

    Google Scholar 

  • Hultsch DF, MacDonald SW, Dixon RA (2002) Variability in reaction time performance of younger and older adults. J Gerontol B Psychol Sci Soc Sci 57:P101–P115

    Article  PubMed  Google Scholar 

  • Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  • Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl Neuroimage 62:782–790. doi:10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  • Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22:581–594

    Article  CAS  PubMed  Google Scholar 

  • Nichols TE, Holmes AP (2001) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  Google Scholar 

  • Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25:653–660. doi:10.1016/j.neuroimage.2004.12.005

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922. doi:10.1016/j.neuroimage.2011.02.046

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Vancleef K, Swinnen SP, Beets IA (2015) Challenge to promote change: both young and older adults benefit from contextual interference. Front Aging Neurosci 7:157. doi:10.3389/fnagi.2015.00157

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfefferbaum A, Rohlfing T, Rosenbloom MJ, Chu W, Colrain IM, Sullivan EV (2013) Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10–85 years) measured with atlas-based parcellation of MRI. Neuroimage 65:176–193. doi:10.1016/j.neuroimage.2012.10.008

    Article  PubMed  Google Scholar 

  • Raz N et al (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    Article  CAS  PubMed  Google Scholar 

  • Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25:377–396. doi:10.1016/S0197-4580(03)00118-0

    Article  PubMed  Google Scholar 

  • Raz N et al (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689. doi:10.1093/cercor/bhi044

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci 17:177–182

    Article  Google Scholar 

  • Ridgway G, Barnes J, Pepple T, Fox N (2011) Estimation of total intracranial volume; a comparison of methods. Alzheimer’s Dement 7:S62–S63

    Article  Google Scholar 

  • Rorden C, Brett M (2000) Stereotaxic display of brain lesions. Behav Neurol 12:191–200

    Article  PubMed  Google Scholar 

  • Salat DH et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14:721–730. doi:10.1093/cercor/bhh032

    Article  PubMed  Google Scholar 

  • Salthouse TA (2011) Neuroanatomical substrates of age-related cognitive decline. Psychol Bull 137:753–784. doi:10.1037/a0023262

    Article  PubMed  PubMed Central  Google Scholar 

  • Seidler RD et al (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34:721–733. doi:10.1016/j.neubiorev.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  • Serbruyns L et al (2013) Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Struct Funct. doi:10.1007/s00429-013-0654-z

    PubMed  Google Scholar 

  • Serbruyns L et al (2015a) Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Struct Funct 220:273–290. doi:10.1007/s00429-013-0654-z

    Article  CAS  PubMed  Google Scholar 

  • Serbruyns L et al (2015b) Subcortical volumetric changes across the adult lifespan: subregional thalamic atrophy accounts for age-related sensorimotor performance declines. Cortex 65:128–138. doi:10.1016/j.cortex.2015.01.003

    Article  PubMed  Google Scholar 

  • Serrien DJ, Swinnen SP, Stelmach GE (2000) Age-related deterioration of coordinated interlimb behavior. J Gerontol B Psychol Sci Soc Sci 55:P295–P303

    Article  CAS  PubMed  Google Scholar 

  • Sisti HM et al (2011) Testing multiple coordination constraints with a novel bimanual visuomotor task. PLoS One 6:e23619. doi:10.1371/journal.pone.0023619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sisti HM et al (2012) Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning. Learn Mem 19:351–357. doi:10.1101/lm.026534.112

    Article  PubMed  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155. doi:10.1002/hbm.10062

    Article  PubMed  Google Scholar 

  • Solesio-Jofre E, Serbruyns L, Woolley DG, Mantini D, Beets IA, Swinnen SP (2014) Aging effects on the resting state motor network and interlimb coordination. Hum Brain Mapp. doi:10.1002/hbm.22450

    PubMed  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315. doi:10.1038/nn1008

    Article  CAS  PubMed  Google Scholar 

  • Swinnen SP, Jardin K, Verschueren S, Meulenbroek R, Franz L, Dounskaia N, Walter CB (1998) Exploring interlimb constraints during bimanual graphic performance: effects of muscle grouping and direction. Behav Brain Res 90:79–87

    Article  CAS  PubMed  Google Scholar 

  • Tisserand DJ, Pruessner JC, Sanz Arigita EJ, van Boxtel MP, Evans AC, Jolles J, Uylings HB (2002) Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage 17:657–669

    Article  PubMed  Google Scholar 

  • Wishart LR, Lee TD, Murdoch JE, Hodges NJ (2000) Effects of aging on automatic and effortful processes in bimanual coordination. J Gerontol B Psychol Sci Soc Sci 55:P85–P94

    Article  CAS  PubMed  Google Scholar 

  • Woolrich MW et al (2009) Bayesian analysis of neuroimaging data in FSL. Neuroimage 45:S173–S186. doi:10.1016/j.neuroimage.2008.10.055

    Article  PubMed  Google Scholar 

  • World-Medical-Association (1964, 2008) World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects

  • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57. doi:10.1109/42.906424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy (P7/11); Research Fund KU Leuven (C16/15/070.); and FWO Vlaanderen (G.0721.12, G0708.14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter van Ruitenbeek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All human volunteers signed the informed consent form prior to inclusion.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Ruitenbeek, P., Serbruyns, L., Solesio-Jofre, E. et al. Cortical grey matter content is associated with both age and bimanual performance, but is not observed to mediate age-related behavioural decline. Brain Struct Funct 222, 437–448 (2017). https://doi.org/10.1007/s00429-016-1226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1226-9

Keywords

Navigation