Skip to main content
Log in

Do age and sex impact on the absolute cell numbers of human brain regions?

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

What is the influence of sex and age on the quantitative cell composition of the human brain? By using the isotropic fractionator to estimate absolute cell numbers in selected brain regions, we looked for sex- and age-related differences in 32 medial temporal lobes (comprised basically by the hippocampal formation, amygdala and parahippocampal gyrus), sixteen male (29–92 years) and sixteen female (25–82); and 31 cerebella, seventeen male (29–92 years) and fourteen female (25–82). These regions were dissected from the brain, fixed and homogenized, and then labeled with a DNA-marker (to count all nuclei) and with a neuron-specific nuclear marker (to estimate neuron number). Total number of cells in the medial temporal lobe was found to be 1.91 billion in men, and 1.47 billion in women, a difference of 23 %. This region showed 34 % more neurons in men than in women: 525.1 million against 347.4 million. In contrast, no sex differences were found in the cerebellum. Regarding the influence of age, a quadratic correlation was found between neuronal numbers and age in the female medial temporal lobe, suggesting an early increase followed by slight decline after age 50. The cerebellum showed numerical stability along aging for both neurons and non-neuronal cells. In sum, results indicate a sex-related regional difference in total and neuronal cell numbers in the medial temporal lobe, but not in the cerebellum. On the other hand, aging was found to impact on cell numbers in the medial temporal lobe, while the cerebellum proved resilient to neuronal losses in the course of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326:549–560

    Article  CAS  PubMed  Google Scholar 

  • Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466:356–365

    Article  PubMed  Google Scholar 

  • Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E, da Silva CG, Guimaraes DM, Szczupak D, Parente-Bruno DR, Carvalho LR, Polichiso L, Gomes BV, Oliveira LM, Rodriguez RD, Leite RE, Ferretti-Rebustini RE, Jacob-Filho W, Pasqualucci CA, Grinberg LT, Lent R (2013) Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 136:3738–3752

    Article  PubMed  PubMed Central  Google Scholar 

  • Ash JA, Rapp PR (2014) A quantitative neural network approach to understanding aging phenotypes. Ageing Res Rev 15:44–50

    Article  PubMed  Google Scholar 

  • Astur RS, Taylor LB, Mamelak AN, Philpott L, Sutherland RJ (2002) Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav Brain Res 132:77–84

    Article  PubMed  Google Scholar 

  • Augustinack JC, van der Kouwe AJW, Salat DH, Benner T, Stevens AA, Annese J, Fischl B, Frosch MP, Corkin S (2014) H.M’.s contributions to neuroscience: a review and autopsy studies. Hippocampus 24:1267–1286

    Article  PubMed  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob FW, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and non-neuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  • Azevedo FA, Andrade-Moraes CH, Curado MR, Oliveira-Pinto AV, Guimaraes DM, Szczupak D, Gomes BV, Alho AT, Polichiso L, Tampellini E, Lima L, de Lima DO, da Silva HA, Lent R (2013) Automatic isotropic fractionation for large-scale quantitative cell analysis of nervous tissue. J Neurosci Methods 212:72–78

    Article  PubMed  Google Scholar 

  • Barha CK, Galea LA (2010) Influence of different estrogens on neuroplasticity and cognition in the hippocampus. Biochim Biophys Acta (General Subjects) 1800:1056–1067

    Article  CAS  Google Scholar 

  • Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Björk-Eriksson T, Nordborg C, Gage FH, Druid H, Eriksson PS, Frisén J (2006) Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci USA 103:12564–12568

    Article  CAS  Google Scholar 

  • Bowers JM, Waddell J, McCarthy MM (2010) A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ 1(1):8. doi:10.1186/2042-6410-1-8

    Article  CAS  PubMed  Google Scholar 

  • Brautigam H, Steele JW, Westaway D, Fraser PE, George-Hyslop PH, Gandy S, Hof PR, Dickstein DL (2012) The isotropic fractionator provides evidence for differential loss of hippocampal neurons in two mouse models of Alzheimer’s disease. Molec Neurodegen 7:58

    Article  CAS  Google Scholar 

  • Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80:807–815

    Article  CAS  PubMed  Google Scholar 

  • Caviness VS Jr, Kennedy DN, Richelme C, Rademacher J, Filipek PA (1996) The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 6:726–736

    Article  PubMed  Google Scholar 

  • Chen X, Sachdev PS, Wen W, Anstey KJ (2007) Sex differences in regional gray matter in healthy individuals aged 44–48 years: a voxel-based morphometric study. Neuroimage 36:691–699

    Article  PubMed  Google Scholar 

  • Chêne G, Beiser A, Au R, Preis SR, Wolf PA, Dufouil C, Seshadri S (2014) Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimer’s Dement 11:310–320

    Article  Google Scholar 

  • Cochran JN, Hall AM, Robertson ED (2014) The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res Bull 103:18–28

    Article  CAS  PubMed  Google Scholar 

  • Dam AM (1978) The density of neurons in the human hippocampus. Neuropathol Appl Neurobiol 5:249–264

    Article  Google Scholar 

  • Di Marco LY, Marzo A, Muñoz-Ruiz M, Ikram MA, Kivipelto M, Ruefenacht D, Venneri A, Soininen H, Wanke I, Ventikos YA, Frangi AF (2014) Modifiable lifestyle factors in dementia: a systematic review of longitudinal observational cohort studies. J Alzheimers Dis 42:119–135

    PubMed  Google Scholar 

  • Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12:388–396

    Article  PubMed  Google Scholar 

  • Ferreira ST, Klein WL (2011) The Aβ oligomer hypothesis for synaptic failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96:529–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferretti REL, Damin AE, Brucki AMD, Morillo LS, Perroco TR, Campora F, Moreira EG, Balbino ES, Lima MCA, Battela C, Ruiz L, Grinberg LT, Farfel JM, Leite REP, Suemoto CK, Pasqualucci CA, Rosemberg S, Saldiva PHN, Jacob-Filho W, Nitrini R (2010) Post-mortem diagnosis of dementia by informant interview. Dement Neuropsychol 4:138–144

    Article  Google Scholar 

  • Flunkert S, Hierzer M, Löffler T, Rabl R, Neddens J, Duller S, Schofield EL, Ward MA, Posch M, Jungwirth H, Windisch M, Hutter-Paier B (2013) Elevated levels of soluble total and hypoerphosphorilated tau result in early behavioral deficits and distinct changes in brain pathology in a new tau transgenic mouse model. Neurodegen Dis 11:194–205

    Article  CAS  Google Scholar 

  • Garcia-Amado M, Prensa L (2012) Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex. PLoS ONE 7:e38692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS Jr, Faraone SV, Tsuang MT (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497

    Article  CAS  PubMed  Google Scholar 

  • Grinberg LT, Ferretti RE, Farfel JM, Leite R, Pasqualucci CA, Rosemberg S, Nitrini R, Saldiva PH, Filho WJ (2007) Brain bank of the Brazilian aging brain study group—a milestone reached and more than 1600 collected brains. Cell Tissue Bank 8:151–162

    Article  PubMed  Google Scholar 

  • Grön G, Wunderlich AP, Spitzer M, Tomczak R, Riepe MW (2000) Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat Neurosci 3:404–408

    Article  PubMed  Google Scholar 

  • Hadel S, Wirth C, Rapp M, Gallinat J, Schubert F (2013) Effects of age and sex on the concentrations of glutamate and glutamine in the human brain. J Magn Reson Imaging 38:1480–1487

    Article  PubMed  Google Scholar 

  • Hall TC, Miller AKH, Corsellis JAN (1975) Variations in the human Purkinje cell population according to sex and age. Neuropath Appl Neurobiol 1:267–292

    Article  Google Scholar 

  • Heinsen H, Henn R, Eisenmenger W, Götz M, Bohl J, Bethke B, Lockemann U, Püschel K (1994) Quantitative investigations on the human entorhinal area: left-right asymmetry and age-related changes. Anat Embryol 190:181–194

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518–2521

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel S, von Bartheld CS, Miller DJ, Kaas JH (2015) How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology. Cell Tiss Res 360:29–42

    Article  Google Scholar 

  • Herrup K (2012) The contributions of unscheduled neuronal cell cycle events to the death of neurons in Alzheimer’s disease. Front Biosci 4:2101–2109

    Article  Google Scholar 

  • Hu Y, Xu Q, Li K, Zhu H, Qi R, Zhang Z, Lu G (2013) Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults. PLoS ONE 8(12):e83821

    Article  PubMed  Google Scholar 

  • Insausti R, Annese J, Amaral DG, Squire LR (2013) Human amnesia and the medial temporal lobe illuminated by neuropsychological and neurohistological findings for patient E.P. Proc Natl Acad Sci USA 110:E1953–E1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joelving FC, Billeskov R, Christensen JR, West M, Pakkenberg B (2006) Hippocampal neuron and glial cell numbers in Parkinson’s disease - a stereological study. Hippocampus 16:826–833

    Article  CAS  PubMed  Google Scholar 

  • Jorm AF, Jacomb PA (1989) The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): socio-demographic correlates, reliability, validity and some norms. Psychol Med 19:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Jové M, Portero-Otin M, Naudí A, Ferrer I, Pamplona R (2014) Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol 73:640–657

    Article  PubMed  Google Scholar 

  • Kaufman SB (2007) Sex differences in mental rotation and spatial visualization ability: can they be accounted for by differences in working memory capacity? Intelligence 35:211–223

    Article  Google Scholar 

  • Khutoryan BM (2005) Quantitative characterization of the cellular elements of human cerebellar nuclei at different ages. Neurosci Behav Physiol 35:5–7

    Article  CAS  PubMed  Google Scholar 

  • Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Ito M, Manto M, Marvel C, Parker K, Pezzulo G, Ramnani N, Riva D, Schmahmann J, Vandervert L, Yamazaki T (2014) Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13:151–177

    Article  PubMed  Google Scholar 

  • Kruggel F (2006) MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage 30:1–11

    Article  CAS  PubMed  Google Scholar 

  • Lent R, Azevedo FA, Andrade-Moraes CH, Pinto AV (2012) How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur J Neurosci 35:1–9

    Article  PubMed  Google Scholar 

  • Lövdén M, Herlitz A, Schellenbach M, Grossman-Hutter B, Krüger A, Lindenberger U (2007) Quantitative and qualitative sex differences in spatial navigation. Scand J Psychol 48:353–358

    Article  PubMed  Google Scholar 

  • Maller JJ, Reglade-Meslin C, Anstey KJ, Sachdev P (2006) Sex and symmetry differences in hippocampal volumetrics: before and beyond the opening of the crus of the fornix. Hippocampus 16:80–90

    Article  PubMed  Google Scholar 

  • Marchant NL, Howard RJ (2014) Cognitive debt and Alzheimer’s disease. J Alzheimers Dis 44:755–770

    Google Scholar 

  • Mayhew TM, MacLaren R, Henery CC (1990) Fractionator studies on Purkinje cells in the human cerebellum: numbers in right and left halves of male and female brains. J Anat 169:63–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzucco CA, Lieblich SE, Bingham BI, Williamson MA, Viau V, Galea LA (2006) Both estrogen receptor alpha and estrogen receptor beta agonists enhance cell proliferation in the dentate gyrus of adult female rats. Neuroscience 141:1793–1800

    Article  CAS  PubMed  Google Scholar 

  • Miller DJ, Balaram P, Young NA, Kaas JH (2014) Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Front Neuroanat 8:36

    Article  PubMed  Google Scholar 

  • Moffat SD, Hampson E, Hatzipantelis M (1998) Navigation in a virtual maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evol Hum Behav 19:73–87

    Article  Google Scholar 

  • Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414

    Article  CAS  PubMed  Google Scholar 

  • Morrison JH, Hof PR (1997) Life and death of neurons in the aging brain. Science 278:412–419

    Article  CAS  PubMed  Google Scholar 

  • Morrison JH, Hof PR (2007) Life and death of neurons in the aging cerebral cortex. Int Rev Neurobiol 81:41–57

    Article  CAS  PubMed  Google Scholar 

  • Moser M-B, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619

    Article  CAS  PubMed  Google Scholar 

  • Mouton PR, Martin LJ, Calhoun ME, Dal Fomo G, Price DL (1998) Cognitive decline strongly correlates with cortical atrophy in Alzheimers’ dementia. Neurobiol Aging 5:371–377

    Article  Google Scholar 

  • Mozaffari B (2014) The medial temporal lobe – conduit of parallel connectivity: a model for attention, memory, and perception. Front Integr Neurosci. 8:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Nairn JG, Bedi KS, Mayhew TM, Campbell LF (1989) On the number of Purkinje cells in the human cerebellum: unbiased estimates obtained by using the “fractionator”. J Comp Neurol 290:527–532

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman R, Michels L, Edden RA, Murdoch JB, Martin E (2011) In vivo detection of GABA and glutamate with MEGA-PRESS: reproducibility and gender effects. J Magn Reson Imaging 33:1262–1267

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map, 1st edn. Oxford University Press, USA

    Google Scholar 

  • Ohm TG, Busch C, Bohl J (1997) Unbiased estimation of neuronal numbers in the human nucleus coeruleus during aging. Neurobiol Aging 18:393–399

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Pinto AV, Santos RM, Coutinho RA, Oliveira LM, Santos GB, Alho ATL, Leite REP, Farfel JM, Suemoto CK, Grinberg LT, Pasqualucci CA, Jacob-Filho W, Lent R (2014) Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males. PLoS ONE 9(11):e111733. doi:10.1371/journal.pone.0111733

    Article  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  CAS  PubMed  Google Scholar 

  • Palop JJ, Mucke L (2010) Amyloid-β-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Rev Neurosci 7:812–818

    Article  Google Scholar 

  • Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29:1754–1762

    Article  CAS  PubMed  Google Scholar 

  • Persson J, Herlitz A, Engman J, Morell A, Sjölie D, Wikström J, Söderlund H (2013) Remembering our origin: gender differences in spatial memory are reflected in gender differences in hippocampal lateralization. Behav Brain Res 256:219–228

    Article  PubMed  Google Scholar 

  • Pfaff DW (2011) Man and woman: an inside story. Oxford University Press, p 226

  • Piaceri I, Raspanti B, Tedde A, Bagnoli S, Sorbi S, Nacmias B (2015) Epigenetic modifications in Alzheimer’s disease: cause or effect? J Alzheimers Dis 43:1169–1173

    PubMed  Google Scholar 

  • Raz N, Dupuis JH, Briggs SD, McGavran C, Acker JD (1998) Differential effects of age and sex on the cerebellar hemispheres and the vermis: a prospective MR study. AJNR Am J Neuroradiol 19:65–71

    CAS  PubMed  Google Scholar 

  • Reeber SL, Otis TM, Sillitoe RV (2013) New roles for the cerebellum in health and disease. Front Syst Neurosci 7:83

    Article  PubMed  Google Scholar 

  • Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260

    Article  PubMed  Google Scholar 

  • Sebolella A, Freitas-Correa L, Oliveira FF, Paula-Lima AC, Saraiva LM, Martins SM, Mota LD, Torres C, Alves-Leon S, de Souza JM, Carraro DM, Brentani H, De Felice FG, Ferreira ST (2012) Amyloid-β oligomers induce differential gene expression in Alzheimers’ diseased in adult human brain slices. J Biol Chem 287:5021–5032

    Article  Google Scholar 

  • Sheng JG, Mrak RE, Griffin WS (1998) Enlarged and phagocytic, but not primed, interleukin-1 alpha-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol 95:229–234

    Article  CAS  PubMed  Google Scholar 

  • Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494

    Article  CAS  PubMed  Google Scholar 

  • Simic G, Bexheti S, Kelovic Z, Kos M, Grbic K, Hof PR, Kostovic I (2005) Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex. Neuroscience 130:911–925

    Article  CAS  PubMed  Google Scholar 

  • Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stan AD, Ghose S, Gao X-M, Roberts RC, Lewis-Amezcua K, Hatanpaa KJ, Tamminga CA (2006) Human postmortem tissue: what quality markers matter? Brain Res 1123:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strata P (2015) The emotional cerebellum. Cerebellum [Epub ahead of print]

  • Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN (2010) Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage 49:63–70

    Article  PubMed  Google Scholar 

  • Van Hoesen GW (1995) Anatomy of the medial temporal lobe. Magnet Reson Imaging 13:1047–1055

    Article  Google Scholar 

  • Van Hoesen GW, Augustinack JC, Dierking J, Redman SJ, Thangavel R (2000) The parahippocampal gyrus in Alzheimer’s disease. Clinical and preclinical neuroanatomical correlates. Ann NY Acad Sci 911:254–274

    Article  PubMed  Google Scholar 

  • Vecchio F, Miraglia F, Marra C, Quaranta D, Vita MG, Bramanti P, Rossini PM (2014) Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis 41:113–127

    PubMed  Google Scholar 

  • Weiland NG, Orikasa C, Hayashi S, McEwen BS (1997) Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. J Comp Neurol 388:603–612

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    Article  CAS  PubMed  Google Scholar 

  • Witelson SF, Glezer II, Kigar DL (1995) Women have greater density of neurons in posterior temporal cortex. J Neurosci 15:3418–3428

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare no competing financial interests. We acknowledge the financial support by the National Council for Development of Science and Technology (CNPq), the State Foundations for the Support of Science of Rio de Janeiro (FAPERJ) and São Paulo (FAPESP), and the National Institute for Translational Neuroscience (INNT), including fellowships for students offered by CAPES Foundation, Ministry of Education. We are grateful for the technical assistance of Ludmila Bezerra Carvalho, Camila Gomes da Silva and Emily Castro Fonseca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Lent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira-Pinto, A.V., Andrade-Moraes, C.H., Oliveira, L.M. et al. Do age and sex impact on the absolute cell numbers of human brain regions?. Brain Struct Funct 221, 3547–3559 (2016). https://doi.org/10.1007/s00429-015-1118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1118-4

Keywords

Navigation