Skip to main content
Log in

Effects of abstinence from chronic cocaine self-administration on nonhuman primate dorsal and ventral noradrenergic bundle terminal field structures

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Repeated exposure to cocaine is known to dysregulate the norepinephrine system, and norepinephrine has also been implicated as having a role in abstinence and withdrawal. The goal of this study was to determine the effects of exposure to cocaine self-administration and subsequent abstinence on regulatory elements of the norepinephrine system in the nonhuman primate brain. Rhesus monkeys self-administered cocaine (0.3 mg/kg/injection, 30 reinforcers/session) under a fixed-interval 3-min schedule of reinforcement for 100 sessions. Animals in the abstinence group then underwent a 30-day period during which no operant responding was conducted, followed by a final session of operant responding. Control animals underwent identical schedules of food reinforcement and abstinence. This duration of cocaine self-administration has been shown previously to increase levels of norepinephrine transporters (NET) in the ventral noradrenergic bundle terminal fields. In contrast, in the current study, abstinence from chronic cocaine self-administration resulted in elevated levels of [3H]nisoxetine binding to the NET primarily in dorsal noradrenergic bundle terminal field structures. As compared to food reinforcement, chronic cocaine self-administration resulted in decreased binding of [3H]RX821002 to α2-adrenoceptors primarily in limbic-related structures innervated by both dorsal and ventral bundles, as well as elevated binding in the striatum. However, following abstinence from responding for cocaine binding to α2-adrenoceptors was not different than in control animals. These data demonstrate the dynamic nature of the regulation of norepinephrine during cocaine use and abstinence, and provide further evidence that the norepinephrine system should not be overlooked in the search for effective pharmacotherapies for cocaine dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol 493:99–110. doi:10.1002/cne.20723

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Delfs JM, Druhan J, Zhu Y (1999) The bed nucleus of the stria terminalis. A target site for noradrenergic actions in opiate withdrawal. Ann N Y Acad Sci 877:486–498

    Article  CAS  PubMed  Google Scholar 

  • Baraban JM, Aghajanian GK (1981) Noradrenergic innervation of serotonergic neurons in the dorsal raphe: demonstration by electron microscopic autoradiography. Brain Res 204:1–11

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Milchanowski AB, Rothman RB (2004) Evidence for alterations in alpha2-adrenergic receptor sensitivity in rats exposed to repeated cocaine administration. Neuroscience 125:683–690. doi:10.1016/j.neuroscience.2004.02.013

    Article  CAS  PubMed  Google Scholar 

  • Belej T, Manji D, Sioutis S, Barros HM, Nobrega JN (1996) Changes in serotonin and norepinephrine uptake sites after chronic cocaine: pre- vs. post-withdrawal effects. Brain Res 736:287–296

    Article  CAS  PubMed  Google Scholar 

  • Bennett BA, Wichems CH, Hollingsworth CK, Davies HM, Thornley C, Sexton T, Childers SR (1995) Novel 2-substituted cocaine analogs: uptake and ligand binding studies at dopamine, serotonin and norepinephrine transport sites in the rat brain. J Pharmacol Exp Ther 272:1176–1186

    CAS  PubMed  Google Scholar 

  • Beveridge TJ, Smith HR, Nader MA, Porrino LJ (2005) Effects of chronic cocaine self-administration on norepinephrine transporters in the nonhuman primate brain. Psychopharmacology 180:781–788. doi:10.1007/s00213-005-2162-1

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Smith HR, Daunais JB, Nader MA, Porrino LJ (2006) Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur J Neurosci 23:3109–3118. doi:10.1111/j.1460-9568.2006.04788.x

    Article  PubMed  Google Scholar 

  • Beveridge TJ, Smith HR, Nader MA, Porrino LJ (2009) Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys. Neuropsychopharmacology 34:1162–1171. doi:10.1038/npp.2008.135

    Article  CAS  PubMed  Google Scholar 

  • Bowden DM, German DC, Poynter WD (1978) An autoradiographic, semistereotaxic mapping of major projections from locus coeruleus and adjacent nuclei in Macaca mulatta. Brain Res 145:257–276

    Article  CAS  PubMed  Google Scholar 

  • Brown ZJ, Nobrega JN, Erb S (2011) Central injections of noradrenaline induce reinstatement of cocaine seeking and increase c-fos mRNA expression in the extended amygdala. Behav Brain Res 217:472–476. doi:10.1016/j.bbr.2010.09.025

    Article  CAS  PubMed  Google Scholar 

  • Buffalari DM, Baldwin CK, See RE (2012) Treatment of cocaine withdrawal anxiety with guanfacine: relationships to cocaine intake and reinstatement of cocaine seeking in rats. Psychopharmacology 223:179–190. doi:10.1007/s00213-012-2705-1

    Article  CAS  PubMed  Google Scholar 

  • Callado LF, Meana JJ, Grijalba B, Pazos A, Sastre M, Garcia-Sevilla JA (1998) Selective increase of alpha2A-adrenoceptor agonist binding sites in brains of depressed suicide victims. J Neurochem 70:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 371:179–207. doi:10.1002/(SICI)1096-9861(19960722)371:2<179:AID-CNE1>3.0.CO;2-#

  • Colburn RW, Goodwin FK, Murphy DL, Bunney WE Jr, Davis JM (1968) Quantitative studies of norepinephrine uptake by synaptosomes. Biochem Pharmacol 17:957–964

    Article  CAS  PubMed  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399

    Article  CAS  PubMed  Google Scholar 

  • De Vos H, Bricca G, De Keyser J, De Backer JP, Bousquet P, Vauquelin G (1994) Imidazoline receptors, non-adrenergic idazoxan binding sites and alpha 2-adrenoceptors in the human central nervous system. Neuroscience 59:589–598

    Article  PubMed  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones GS (1998) Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806:127–140

    Article  CAS  PubMed  Google Scholar 

  • Ding YS et al (2010) PET imaging of the effects of age and cocaine on the norepinephrine transporter in the human brain using (S, S)-[(11)C]O-methylreboxetine and HRRT. Synapse 64:30–38. doi:10.1002/syn.20696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dossin O, Mouledous L, Baudry X, Tafani JA, Mazarguil H, Zajac JM (2000) Characterization of a new radioiodinated probe for the alpha2C adrenoceptor in the mouse brain. Neurochem Int 36:7–18

    Article  CAS  PubMed  Google Scholar 

  • Erb S, Hitchcott PK, Rajabi H, Mueller D, Shaham Y, Stewart J (2000) Alpha-2 adrenergic receptor agonists block stress-induced reinstatement of cocaine seeking. Neuropsychopharmacology 23:138–150. doi:10.1016/S0893-133X(99)00158-X

    Article  CAS  PubMed  Google Scholar 

  • Fagerholm V et al (2008) Autoradiographic characterization of alpha(2C)-adrenoceptors in the human striatum. Synapse 62:508–515. doi:10.1002/syn.20520

    Article  CAS  PubMed  Google Scholar 

  • Farfel GM, Kleven MS, Woolverton WL, Seiden LS, Perry BD (1992) Effects of repeated injections of cocaine on catecholamine receptor binding sites, dopamine transporter binding sites and behavior in rhesus monkey. Brain Res 578:235–243

    Article  CAS  PubMed  Google Scholar 

  • Felten DL, Sladek JR Jr (1983) Monoamine distribution in primate brain V. Monoaminergic nuclei: anatomy, pathways and local organization. Brain Res Bull 10:171–284

    Article  CAS  PubMed  Google Scholar 

  • Felten DL, Laties AM, Carpenter MB (1974) Monoamine-containing cell bodies in the squirrel monkey brain. Am J Anat 139:153–165. doi:10.1002/aja.1001390202

    Article  CAS  PubMed  Google Scholar 

  • Flugge G (1996) Alterations in the central nervous alpha 2-adrenoceptor system under chronic psychosocial stress. Neuroscience 75:187–196

    Article  CAS  PubMed  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    CAS  PubMed  Google Scholar 

  • Fox HC, Seo D, Tuit K, Hansen J, Kimmerling A, Morgan PT, Sinha R (2012) Guanfacine effects on stress, drug craving and prefrontal activation in cocaine dependent individuals: preliminary findings. J Psychopharmacol 26:958–972. doi:10.1177/0269881111430746

    Article  PubMed  PubMed Central  Google Scholar 

  • Fricks-Gleason AN, Marshall JF (2008) Post-retrieval beta-adrenergic receptor blockade: effects on extinction and reconsolidation of cocaine-cue memories. Learn Mem 15:643–648. doi:10.1101/lm.1054608

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritschy JM, Grzanna R (1990) Distribution of locus coeruleus axons within the rat brainstem demonstrated by Phaseolus vulgaris leucoagglutinin anterograde tracing in combination with dopamine-beta-hydroxylase immunofluorescence. J Comp Neurol 293:616–631. doi:10.1002/cne.902930407

    Article  CAS  PubMed  Google Scholar 

  • Gatter KC, Powell TP (1977) The projection of the locus coeruleus upon the neocortex in the macaque monkey. Neuroscience 2:441–445

    Article  CAS  PubMed  Google Scholar 

  • Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 43:107–113

    Article  CAS  PubMed  Google Scholar 

  • Gilsbach R, Albarran-Juarez J, Hein L (2011) Pre-versus postsynaptic signaling by alpha(2)-adrenoceptors. Curr Top Membr 67:139–160. doi:10.1016/B978-0-12-384921-2.00007-0

    Article  CAS  PubMed  Google Scholar 

  • Giralt MT, Garcia-Sevilla JA (1989) Acute and long-term regulation of brain alpha 2-adrenoceptors after manipulation of noradrenergic transmission in the rat. Eur J Pharmacol 164:455–466

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Rivet JM, Audinot V, Newman-Tancredi A, Cistarelli L, Millan MJ (1998) Simultaneous quantification of serotonin, dopamine and noradrenaline levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto- and heteroreceptor-mediated control of release. Neuroscience 84:413–429

    Article  CAS  PubMed  Google Scholar 

  • Grijalba B, Callado LF, Javier Meana J, Garcia-Sevilla JA, Pazos A (1996) Alpha 2-adrenoceptor subtypes in the human brain: a pharmacological delineation of [3H]RX-821002 binding to membranes and tissue sections. Eur J Pharmacol 310:83–93

    Article  CAS  PubMed  Google Scholar 

  • Grimm JW, See RE (2000) Dissociation of primary and secondary reward-relevant limbic nuclei in an animal model of relapse. Neuropsychopharmacology 22:473–479. doi:10.1016/S0893-133X(99)00157-8

    Article  CAS  PubMed  Google Scholar 

  • Grzanna R, Fritschy JM (1991) Efferent projections of different subpopulations of central noradrenaline neurons. Prog Brain Res 88:89–101

    Article  CAS  PubMed  Google Scholar 

  • Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6. doi:10.1186/1471-2210-6-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Happe HK, Coulter CL, Gerety ME, Sanders JD, O’Rourke M, Bylund DB, Murrin LC (2004) Alpha-2 adrenergic receptor development in rat CNS: an autoradiographic study. Neuroscience 123:167–178

    Article  CAS  PubMed  Google Scholar 

  • Holmberg M, Scheinin M, Kurose H, Miettinen R (1999) Adrenergic alpha2C-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry. Neuroscience 93:1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Holmberg M, Fagerholm V, Scheinin M (2003) Regional distribution of alpha(2C)-adrenoceptors in brain and spinal cord of control mice and transgenic mice overexpressing the alpha(2C)-subtype: an autoradiographic study with [(3)H]RX821002 and [(3)H]rauwolscine. Neuroscience 117:875–898

    Article  CAS  PubMed  Google Scholar 

  • Jobes ML, Ghitza UE, Epstein DH, Phillips KA, Heishman SJ, Preston KL (2011) Clonidine blocks stress-induced craving in cocaine users. Psychopharmacology 218:83–88. doi:10.1007/s00213-011-2230-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BE, Moore RY (1977) Ascending projections of the locus coeruleus in the rat II. Autoradiographic study. Brain Res 127:25–53

    CAS  PubMed  Google Scholar 

  • Kantak KM, Black Y, Valencia E, Green-Jordan K, Eichenbaum HB (2002) Dissociable effects of lidocaine inactivation of the rostral and caudal basolateral amygdala on the maintenance and reinstatement of cocaine-seeking behavior in rats. J Neurosci 22:1126–1136

    CAS  PubMed  Google Scholar 

  • Kerfoot EC, Williams CL (2011) Interactions between brainstem noradrenergic neurons and the nucleus accumbens shell in modulating memory for emotionally arousing events. Learn Mem 18:405–413. doi:10.1101/lm.2108911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448:53–101. doi:10.1002/cne.10236

    Article  PubMed  Google Scholar 

  • Lee B, Tiefenbacher S, Platt DM, Spealman RD (2004) Pharmacological blockade of alpha2-adrenoceptors induces reinstatement of cocaine-seeking behavior in squirrel monkeys. Neuropsychopharmacology 29:686–693. doi:10.1038/sj.npp.1300391

    Article  CAS  PubMed  Google Scholar 

  • Leri F, Flores J, Rodaros D, Stewart J (2002) Blockade of stress-induced but not cocaine-induced reinstatement by infusion of noradrenergic antagonists into the bed nucleus of the stria terminalis or the central nucleus of the amygdala. J Neurosci 22:5713–5718 20026536

    CAS  PubMed  Google Scholar 

  • Logan JG, O’Donovan DJ (1980) Noradrenaline uptake by synaptosomes and (Na+-K+) ATPase. Biochem Pharmacol 29:2105–2112

    Article  CAS  PubMed  Google Scholar 

  • Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections to cortex: topography, morphology and collateralization. Brain Res Bull 9:287–294

    Article  CAS  PubMed  Google Scholar 

  • Loughlin SE, Foote SL, Bloom FE (1986) Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience 18:291–306

    Article  CAS  PubMed  Google Scholar 

  • Macey DJ, Smith HR, Nader MA, Porrino LJ (2003) Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the rhesus monkey. J Neurosci 23:12–16

    CAS  PubMed  Google Scholar 

  • Marcinkiewicz M, Morcos R, Chretien M (1989) CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-Gold complex in the rat. J Comp Neurol 289:11–35. doi:10.1002/cne.902890103

    Article  CAS  PubMed  Google Scholar 

  • Martin LJ, Powers RE, Dellovade TL, Price DL (1991) The bed nucleus-amygdala continuum in human and monkey. J Comp Neurol 309:445–485. doi:10.1002/cne.903090404

    Article  CAS  PubMed  Google Scholar 

  • McCune SK, Voigt MM, Hill JM (1993) Expression of multiple alpha adrenergic receptor subtype messenger RNAs in the adult rat brain. Neuroscience 57:143–151

    Article  CAS  PubMed  Google Scholar 

  • McDougle CJ, Black JE, Malison RT, Zimmermann RC, Kosten TR, Heninger GR, Price LH (1994) Noradrenergic dysregulation during discontinuation of cocaine use in addicts. Arch Gen Psychiatry 51:713–719

    Article  CAS  PubMed  Google Scholar 

  • McKellar S, Loewy AD (1982) Efferent projections of the A1 catecholamine cell group in the rat: an autoradiographic study. Brain Res 241:11–29

    Article  CAS  PubMed  Google Scholar 

  • Nader MA et al (2002) Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: initial and chronic exposure. Neuropsychopharmacology 27:35–46. doi:10.1016/S0893-133X(01)00427-4

    Article  CAS  PubMed  Google Scholar 

  • Nicholas AP, Pieribone V, Hokfelt T (1993) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594. doi:10.1002/cne.903280409

    Article  CAS  PubMed  Google Scholar 

  • Ongur D, An X, Price JL (1998) Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 401:480–505

    Article  CAS  PubMed  Google Scholar 

  • Ordway GA, Jaconetta SM, Halaris AE (1993) Characterization of subtypes of alpha-2 adrenoceptors in the human brain. J Pharmacol Exp Ther 264:967–976

    CAS  PubMed  Google Scholar 

  • Otis JM, Dashew KB, Mueller D (2013) Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J Neurosci 33:1271–1281a. doi:10.1523/JNEUROSCI.3463-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350:350–354. doi:10.1038/350350a0

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Perala M, Hirvonen H, Kalimo H, Ala-Uotila S, Regan JW, Akerman KE, Scheinin M (1992) Differential expression of two alpha 2-adrenergic receptor subtype mRNAs in human tissues. Brain Res Mol Brain Res 16:57–63

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Luppi PH, Fort P, Rampon C, Jouvet M (1996) Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. J Comp Neurol 364:402–413. doi:10.1002/(SICI)1096-9861(19960115)364:3<402:AID-CNE2>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen A, Amaral DG (1993a) Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the amygdaloid complex. J Comp Neurol 331:14–36. doi:10.1002/cne.903310103

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen A, Amaral DG (1993b) Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the hippocampal formation. J Comp Neurol 331:37–74. doi:10.1002/cne.903310104

    Article  CAS  PubMed  Google Scholar 

  • Pitts DK, Marwah J (1989) Chronic cocaine reduces alpha 2-adrenoceptor elicited mydriasis and inhibition of locus coeruleus neurons. Eur J Pharmacol 160:201–209

    Article  CAS  PubMed  Google Scholar 

  • Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 24:3554–3562. doi:10.1523/JNEUROSCI.5578-03.2004

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Samuvel DJ, Balasubramaniam A, See RE, Jayanthi LD (2010) Altered dopamine transporter function and phosphorylation following chronic cocaine self-administration and extinction in rats. Biochem Biophys Res Commun 391:1517–1521. doi:10.1016/j.bbrc.2009.12.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retson TA, Van Bockstaele EJ (2013) Coordinate regulation of noradrenergic and serotonergic brain regions by amygdalar neurons. J Chem Neuroanat 52:9–19. doi:10.1016/j.jchemneu.2013.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritz MC, Cone EJ, Kuhar MJ (1990) Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study. Life Sci 46:635–645

    Article  CAS  PubMed  Google Scholar 

  • Rudoy CA, Van Bockstaele EJ (2007) Betaxolol, a selective beta(1)-adrenergic receptor antagonist, diminishes anxiety-like behavior during early withdrawal from chronic cocaine administration in rats. Prog Neuropsychopharmacol Biol Psychiatry 31:1119–1129. doi:10.1016/j.pnpbp.2007.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT Jr (1994) Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res 21:133–149

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Catapano D, O’Malley S (1999) Stress-induced craving and stress response in cocaine dependent individuals. Psychopharmacology 142:343–351

    Article  CAS  PubMed  Google Scholar 

  • Smith RJ, Aston-Jones G (2011) alpha(2) Adrenergic and imidazoline receptor agonists prevent cue-induced cocaine seeking. Biol Psychiatry 70:712–719. doi:10.1016/j.biopsych.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HR, Beveridge TJ, Porrino LJ (2006) Distribution of norepinephrine transporters in the non-human primate brain. Neuroscience 138:703–714. doi:10.1016/j.neuroscience.2005.11.033

    Article  CAS  PubMed  Google Scholar 

  • Starke K (2001) Presynaptic autoreceptors in the third decade: focus on alpha2-adrenoceptors. J Neurochem 78:685–693

    Article  CAS  PubMed  Google Scholar 

  • Stefanik MT, Kalivas PW (2013) Optogenetic dissection of basolateral amygdala projections during cue-induced reinstatement of cocaine seeking. Front Behav Neurosci 7:213. doi:10.3389/fnbeh.2013.00213

    Article  PubMed  PubMed Central  Google Scholar 

  • Tejani-Butt SM (1992) [3H]nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 260:427–436

    CAS  PubMed  Google Scholar 

  • Terenzi MG, Ingram CD (1995) A combined immunocytochemical and retrograde tracing study of noradrenergic connections between the caudal medulla and bed nuclei of the stria terminalis. Brain Res 672:289–297

    Article  CAS  PubMed  Google Scholar 

  • Trendelenburg AU, Starke K, Limberger N (1994) Presynaptic alpha 2A-adrenoceptors inhibit the release of endogenous dopamine in rabbit caudate nucleus slices. Naunyn Schmiedebergs Arch Pharmacol 350:473–481

    Article  CAS  PubMed  Google Scholar 

  • Uhlen S, Dambrova M, Nasman J, Schioth HB, Gu Y, Wikberg-Matsson A, Wikberg JE (1998) [3H]RS79948-197 binding to human, rat, guinea pig and pig alpha2A-, alpha2B- and alpha2C-adrenoceptors. Comparison with MK912, RX821002, rauwolscine and yohimbine. Eur J Pharmacol 343:93–101

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND et al (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827–830. doi:10.1038/386827a0

    Article  CAS  PubMed  Google Scholar 

  • Vranjkovic O, Hang S, Baker DA, Mantsch JR (2012) β-adrenergic receptor mediation of stress-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: roles for β1 and β2 adrenergic receptors. J Pharacol Exp Ther 342:541–551. doi:10.1124/jpet.112.193615

    Article  CAS  Google Scholar 

  • Wang R, Macmillan LB, Fremeau RT Jr, Magnuson MA, Lindner J, Limbird LE (1996) Expression of alpha 2-adrenergic receptor subtypes in the mouse brain: evaluation of spatial and temporal information imparted by 3 kb of 5′ regulatory sequence for the alpha 2A AR-receptor gene in transgenic animals. Neuroscience 74:199–218

    Article  CAS  PubMed  Google Scholar 

  • Witter MP, Amaral DG (1991) Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 307:437–459. doi:10.1002/cne.903070308

    Article  CAS  PubMed  Google Scholar 

  • Woulfe JM, Hrycyshyn AW, Flumerfelt BA (1988) Collateral axonal projections from the A1 noradrenergic cell group to the paraventricular nucleus and bed nucleus of the stria terminalis in the rat. Exp Neurol 102:121–124

    Article  CAS  PubMed  Google Scholar 

  • Woulfe JM, Flumerfelt BA, Hrycyshyn AW (1990) Efferent connections of the A1 noradrenergic cell group: a DBH immunohistochemical and PHA-L anterograde tracing study. Exp Neurol 109:308–322

    Article  CAS  PubMed  Google Scholar 

  • Yavich L, Lappalainen R, Sirvio J, Haapalinna A, MacDonald E (1997) Alpha2-adrenergic control of dopamine overflow and metabolism in mouse striatum. Eur J Pharmacol 339:113–119

    Article  CAS  PubMed  Google Scholar 

  • Zorrilla EP, Wee S, Zhao Y, Specio S, Boutrel B, Koob GF, Weiss F (2012) Extended access cocaine self-administration differentially activates dorsal raphe and amygdala corticotropin-releasing factor systems in rats. Addict Biol 17:300–308. doi:10.1111/j.1369-1600.2011.00329.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Susan Nader and Tonya Calhoun for their assistance in conducting the self-administration studies.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Porrino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, H.R., Beveridge, T.J.R., Nader, M.A. et al. Effects of abstinence from chronic cocaine self-administration on nonhuman primate dorsal and ventral noradrenergic bundle terminal field structures. Brain Struct Funct 221, 2703–2715 (2016). https://doi.org/10.1007/s00429-015-1066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1066-z

Keywords

Navigation