Skip to main content
Log in

Molecular features for timely cancer diagnosis and treatment – tumors of the ovary, fallopian tube and endometrium

  • REVIEW AND PERSPECTIVES
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Gynecologic pathology has moved, within only a few years, from being a diagnostic area devoid of molecular testing into a diagnostic discipline in which such analyses are becoming routine. The direct relevance of molecular characterization to the choice of treatment of patients with carcinomas originating in both the uterus and adnexae makes it likely that such testing will only expand along with our understanding of the molecular make-up of these tumors. As a consequence, gynecologic pathologists have become an integral part of patient management, rather than lab personnel providing external services.

In parallel, molecular testing is expanding as a tool for diagnosing rare tumors affecting these organs, including soft tissue tumors, sex cord-stromal tumors and germ cell tumors, as well as other rare entities. Increased knowledge in this area bears directly on the ability to diagnose these tumors in a reproducible manner, as well as recognize and consult on genetic diseases. Hopefully, despite the inherent difficulty in studying rare cancers, it will also translate into new therapeutic options for the malignant ones among these rare cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fox S, Doig KD, Fellowes AP (2023) “Homologous Recombination Repair Deficiency: An Overview for Pathologists.,.” Mod Pathol 36(3):100049. https://doi.org/10.1016/j.modpat.2022.100049

    Article  PubMed  Google Scholar 

  2. Miller RE, Elyashiv O, El-Shakankery KH, Ledermann JA (2022) Ovarian cancer therapy: homologous recombination deficiency as a predictive biomarker of response to PARP inhibitors. Onco Targets Ther 15:1105–1117. https://doi.org/10.2147/OTT.S272199

  3. Krämer P, Talhouk A, Brett MA, Chiu DS, Cairns ES, Scheunhage DA, Hammond RFL, Farnell D, Nazeran TM, Grube M, Xia Z, Senz J, Leung S, Feil L, Pasternak J, Dixon K, Hartkopf A, Krämer B, Brucker S, Heitz F, du Bois A, Harter P, Kommoss FKF, Sinn HP, Heublein S, Kommoss F, Vollert HW, Manchanda R, de Kroon CD, Nijman HW, de Bruyn M, Thompson EF, Bashashati A, McAlpine JN, Singh N, Tinker AV, Staebler A, Bosse T, Kommoss S, Köbel M, Anglesio MS (2020) Endometrial cancer molecular risk stratification is equally prognostic for endometrioid ovarian carcinoma. Clin Cancer Res 26(20):5400–5410. https://doi.org/10.1158/1078-0432.CCR-20-1268

    Article  PubMed  Google Scholar 

  4. Nofech-Mozes S, Parra-Herran C, Lerner-Ellis J, Xu B, Khalouei S, Bassiouny D, Cesari M, Ismiil N (2017) Molecular-based classification algorithm for endometrial carcinoma categorizes ovarian endometrioid carcinoma into prognostically significant groups. Mod Pathol. 30(12):1748–1759. https://doi.org/10.1038/modpathol.2017.81

    Article  CAS  PubMed  Google Scholar 

  5. Palacios J, Leskela S, Romero I, Rosa-Rosa JM, Caniego-Casas T, Cristobal E, Pérez-Mies B, Gutierrez-Pecharroman A, Santón A, Ojeda B, López-Reig R, Palacios-Berraquero ML, Andrada E, Montes S, Pastor F, Gomez MC, López-Guerrero JA, Poveda A (2020) Molecular Heterogeneity of Endometrioid Ovarian Carcinoma: An Analysis of 166 Cases Using the Endometrial Cancer Subrogate Molecular Classification. Am J Surg Pathol. 44(7):982–990. https://doi.org/10.1097/PAS.0000000000001478

    Article  PubMed  Google Scholar 

  6. Nofech-Mozes S, Parra-Herran C, Bassiouny D, Lerner-Ellis J, Olkhov-Mitsel E, Ismiil N, Hogen L, Vicus D (2019) p53, Mismatch Repair Protein, and POLE Abnormalities in Ovarian Clear Cell Carcinoma: An Outcome-based Clinicopathologic Analysis. Am J Surg Pathol. 43(12):1591–1599. https://doi.org/10.1097/PAS.0000000000001328

    Article  PubMed  Google Scholar 

  7. Lassus H, Similä-Maarala J, Soovares P, Pasanen A, Ahvenainen T, Vahteristo P, Bützow R (2022) TCGA molecular classification in endometriosis-associated ovarian carcinomas: Novel data on clear cell carcinoma. Gynecol Oncol. 31S0090-8258(22):00198–6. https://doi.org/10.1016/j.ygyno.2022.03.016

    Article  CAS  Google Scholar 

  8. Di Dio C, Bogani G, Di Donato V, Cuccu I, Muzii L, Musacchio L, Scambia G, Lorusso D (2023) The role of immunotherapy in advanced and recurrent MMR deficient and proficient endometrial carcinoma. Gynecol Oncol 169:27–33. https://doi.org/10.1016/j.ygyno.2022.11.031

    Article  PubMed  Google Scholar 

  9. Gorringe K, Craig O, Salazar C (2021) “Options for the Treatment of Mucinous Ovarian Carcinoma.,.” Curr Treat Options Oncol 22(12):114. https://doi.org/10.1007/s11864-021-00904-6

    Article  PubMed  Google Scholar 

  10. Slomovitz B, Gourley C, Carey MS, Malpica A, Shih IM, Huntsman D, Fader AN, Grisham RN, Schlumbrecht M, Sun CC, Ludemann J, Cooney GA, Coleman R, Sood AK, Mahdi H, Wong KK, Covens A, O’Malley DM, Lecuru F, Cobb LP, Caputo TA, May T, Huang M, Siemon J, Fernández ML, Ray-Coquard I, Gershenson DM (2020) Low-grade serous ovarian cancer: State of the science. Gynecol Oncol 156(3):715–725. https://doi.org/10.1016/j.ygyno.2019.12.033

    Article  PubMed  Google Scholar 

  11. Veitia R, Caburet S, Georges A, L’Hôte D, Todeschini AL, Benayoun BA (2012) The transcription factor FOXL2: at the crossroads of ovarian physiology and pathology. Mol Cell Endocrinol. 356(1–2):55–64. https://doi.org/10.1016/j.mce.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  12. Huntsman D, Shah SP, Köbel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE, Sun M, Giuliany R, Yorida E, Jones S, Varhol R, Swenerton KD, Miller D, Clement PB, Crane C, Madore J, Provencher D, Leung P, DeFazio A, Khattra J, Turashvil G (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360(26):2719–29. https://doi.org/10.1056/NEJMoa0902542

    Article  PubMed  Google Scholar 

  13. Gilks C, McCluggage WG, Singh N, Kommoss S, Huntsman DG (2013) Ovarian cellular fibromas lack FOXL2 mutations: a useful diagnostic adjunct in the distinction from diffuse adult granulosa cell tumor. Am J Surg Pathol. 37(9):1450–5. https://doi.org/10.1097/PAS.0b013e31828e4f55

    Article  PubMed  Google Scholar 

  14. Kommoss F, Karnezis AN, Wang Y, Keul J, Tessier-Cloutier B, Magrill J, Kommoss S, Senz J, Yang W, Proctor L, Schmidt D, Clement PB, Gilks CB, Huntsman DG (2019) DICER1 and FOXL2 Mutation Status Correlates With Clinicopathologic Features in Ovarian Sertoli-Leydig Cell Tumors. Am J Surg Pathol. 43(5):628–638. https://doi.org/10.1097/PAS.0000000000001232

    Article  PubMed  Google Scholar 

  15. Rimokh R, Goulvent T, Ray-Coquard I, Borel S, Haddad V, Devouassoux-Shisheboran M, Vacher-Lavenu MC, Pujade-Laurraine E, Savina A, Maillet D, Gillet G, Treilleux I (2016) DICER1 and FOXL2 mutations in ovarian sex cord-stromal tumours: a GINECO Group study. Histopathol. 68(2):279–85. https://doi.org/10.1111/his.12747

    Article  Google Scholar 

  16. Huntsman D, Pilsworth JA, Cochrane DR, Neilson SJ, Moussavi BH, Lai D, Munzur AD, Senz J, Wang YK, Zareian S, Bashashati A, Wong A, Keul J, Staebler A, van Meurs HS, Horlings HM, Kommoss S, Kommoss F, Oliva E, Färkkilä AE, Gilks B (2021) Adult-type granulosa cell tumor of the ovary: a FOXL2-centric disease. J Pathol Clin Res. 7(3):243–252. https://doi.org/10.1002/cjp2.198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bodamer O, Barry KK, Tsaparlis M, Hoffman D, Hartman D, Adam MP, Hung C (2022) From Genotype to Phenotype-A Review of Kabuki Syndrome. Genes (Basel) 13(10):1761. https://doi.org/10.3390/genes13101761

    Article  CAS  PubMed  Google Scholar 

  18. Sonenberg N, Filipowicz W, Bhattacharyya SN (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 9(2):102–14. https://doi.org/10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  19. Dehner L, González IA, Stewart DR, Schultz KAP, Field AP, Hill DA (2022) DICER1 tumor predisposition syndrome: an evolving story initiated with the pleuropulmonary blastoma. Mod Pathol. 35(1):4–22. https://doi.org/10.1038/s41379-021-00905-8

    Article  CAS  PubMed  Google Scholar 

  20. Huntsman D, Heravi-Moussavi A, Anglesio MS, Cheng SW, Senz J, Yang W, Prentice L, Fejes AP, Chow C, Tone A, Kalloger SE, Hamel N, Roth A, Ha G, Wan AN, Maines-Bandiera S, Salamanca C, Pasini B, Clarke BA, Lee AF, Lee CH, Zhao C, Young RH, Aparicio SA, Sorensen PH, Wo MM (2012) Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med. 366(3):234–42. https://doi.org/10.1056/NEJMoa1102903

    Article  CAS  PubMed  Google Scholar 

  21. Weigelt B, Conlon N, Schultheis AM, Piscuoglio S, Silva A, Guerra E, Tornos C, Reuter VE, Soslow RA, Young RH, Oliva E (2015) A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Mod Pathol. 28(12):1603–12. https://doi.org/10.1038/modpathol.2015.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Clarke B, de Kock L, Terzic T, McCluggage WG, Stewart CJR, Shaw P, Foulkes WD (2017) DICER1 Mutations Are Consistently Present in Moderately and Poorly Differentiated Sertoli-Leydig Cell Tumors. Am J Surg Pathol. 41(9):1178–1187. https://doi.org/10.1097/PAS.0000000000000895

    Article  PubMed  Google Scholar 

  23. Foulkes W, McCluggage WG, Rivera B, Chong AS, Clarke BA, Schultz KAP, Dehner LP, Tchrakian N, Apellaniz-Ruiz M, Gilks CB, Kommoss F, Stewart CJR (2023) Well-differentiated Sertoli-Leydig Cell Tumors (SLCTs) Are Not Associated With DICER1 Pathogenic Variants and Represent a Different Tumor Type to Moderately and Poorly Differentiated SLCTs. Am J Surg Pathol. 47(4):490–496. https://doi.org/10.1097/PAS.0000000000002010

    Article  PubMed  Google Scholar 

  24. Foulkes W, McCluggage WG, Apellaniz-Ruiz M, Chong AL, Hanley KZ, Velázquez Vega JE, McVeigh TP (2020) Embryonal Rhabdomyosarcoma of the Ovary and Fallopian Tube: Rare Neoplasms Associated With Germline and Somatic DICER1 Mutations. Am J Surg Pathol. 44(6):738–747. https://doi.org/10.1097/PAS.0000000000001442

    Article  PubMed  Google Scholar 

  25. Devouassoux-Shisheboran M, Baillard P, Genestie C, Croce S, Descotes F, Rouleau E, Treilleux I, Gouy S, Morice P, Ray-Coquard I, McCluggage WG (2021) Rare DICER1 and Absent FOXL2 Mutations Characterize Ovarian Juvenile Granulosa Cell Tumors. Am J Surg Pathol. 45(2):223–229. https://doi.org/10.1097/PAS.0000000000001582

    Article  PubMed  Google Scholar 

  26. Jour G, Vougiouklakis T, Zhu K, Vasudevaraja V, Serrano J, Shen G, Linn RL, Feng X, Chiang S, Barroeta JE, Thomas KM, Schwartz LE, Shukla PS, Malpica A, Oliva E, Cotzia P, DeLair DF, Snuderl M (2022) Integrated Analysis of Ovarian Juvenile Granulosa Cell Tumors Reveals Distinct Epigenetic Signatures and Recurrent TERT Rearrangements. Clin Cancer Res. 28(8):1724–1733. https://doi.org/10.1158/1078-0432.CCR-21-3394

    Article  PubMed  Google Scholar 

  27. Kommoss F, Wang Y, Karnezis AN, Magrill J, Tessier-Cloutier B, Lum A, Senz J, Gilks CB, McCluggage WG, Huntsman DG (2018) DICER1 hot-spot mutations in ovarian gynandroblastoma. Histopathol. 73(2):306–313. https://doi.org/10.1111/his.13630

    Article  Google Scholar 

  28. Cho K, Connolly DC, Katabuchi H, Cliby WA (2000) Somatic mutations in the STK11/LKB1 gene are uncommon in rare gynecological tumor types associated with Peutz-Jegher’s syndrome. Am J Pathol. 156(1):339–45. https://doi.org/10.1016/S0002-9440(10)64735-9.PMID10623683;PMCIDPMC1868646

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oliva E, Bennett JA, Young RH, Howitt BE, Croce S, Wanjari P, Zhen C, Da Cruz Paula A, Meserve E, Schoolmeester JK, Westbom-Fremer S, Benzi E, Patil NM, Kooreman L, El-Bahrawy M, Zannoni GF, Krausz T, McCluggage WG, Weigelt B, Ritterhouse LL (2021) A Distinctive Adnexal (Usually Paratubal) Neoplasm Often Associated With Peutz-Jeghers Syndrome and Characterized by STK11 Alterations (STK11 Adnexal Tumor): A Report of 22 Cases. Am J Surg Pathol. 45(8):1061–1074. https://doi.org/10.1097/PAS.0000000000001677

    Article  PubMed  PubMed Central  Google Scholar 

  30. McCluggage W, Parra-Herran C (2022) Ovarian microcystic stromal tumour: from morphological observations to syndromic associations. Histopathol. 80(6):898–904. https://doi.org/10.1111/his.14616

    Article  Google Scholar 

  31. Weigelt B, Kim SH, Da Cruz Paula A, Basili T, Dopeso H, Bi R, Pareja F, da Silva EM, Gularte-Mérida R, Sun Z, Fujisawa S, Smith CG, Ferrando L, Martins Sebastião AP, Bykov Y, Li A, Silveira C, Ashley CW, Stylianou A, Selenica P, Samore WR, Jungbluth AA, Zamarin D, Soslow A (2020) Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary. Nat Commun. 11(1):44. https://doi.org/10.1038/s41467-019-13806-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopez-Beltran A, Cheng L, Roth LM, Zhang S, Wang M, Morton MJ, Zheng W, Abdul Karim FW, Montironi R (2011) KIT gene mutation and amplification in dysgerminoma of the ovary. Cancer. 117(10):2096–103. https://doi.org/10.1002/cncr.25794

    Article  CAS  PubMed  Google Scholar 

  33. Vergote I, Van Nieuwenhuysen E, Busschaert P, Neven P, Han SN, Moerman P, Liontos M, Papaspirou M, Kupryjanczyk J, Hogdall C, Hogdall E, Oaknin A, Garcia A, Mahner S, Trillsch F, Cibula D, Heitz F, Concin N, Speiser P, Salvesen H, Sehouli J, Lambrechts D (2018) The genetic landscape of 87 ovarian germ cell tumors. Gynecol Oncol. 151(1):61–68. https://doi.org/10.1016/j.ygyno.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  34. Cho R, Heskett MB, Sanborn JZ, Boniface C, Goode B, Chapman J, Garg K, Rabban JT, Zaloudek C, Benz SC, Spellman PT, Solomon DA (2020) Multiregion exome sequencing of ovarian immature teratomas reveals 2N near-diploid genomes, paucity of somatic mutations, and extensive allelic imbalances shared across mature, immature, and disseminated components. Mod Pathol. 33(6):1193–1206. https://doi.org/10.1038/s41379-019-0446-y

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramos P, Karnezis AN, Craig DW, Sekulic A, Russell ML, Hendricks WP, Corneveaux JJ, Barrett MT, Shumansky K, Yang Y, Shah SP, Prentice LM, Marra MA, Kiefer J, Zismann VL, McEachron TA, Salhia B, Prat J, D’Angelo E, Clarke BA, Pressey JG, Farley JH, Anthony SP, Roden RB, Cunliffe HE, Huntsman DG, Trent JM (2014) Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 46(5):427–429. https://doi.org/10.1038/ng.2928

  36. Foulkes W, Witkowski L, Carrot-Zhang J, Albrecht S, Fahiminiya S, Hamel N, Tomiak E, Grynspan D, Saloustros E, Nadaf J, Rivera B, Gilpin C, Castellsagué E, Silva-Smith R, Plourde F, Wu M, Saskin A, Arseneault M, Karabakhtsian RG, Reilly EA, Ueland FR, Margiolaki A (2014) Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet. 46(5):438–43. https://doi.org/10.1038/ng.2931

    Article  CAS  PubMed  Google Scholar 

  37. Huntsman D, Karnezis AN, Wang Y, Ramos P, Hendricks WP, Oliva E, D’Angelo E, Prat J, Nucci MR, Nielsen TO, Chow C, Leung S, Kommoss F, Kommoss S, Silva A, Ronnett BM, Rabban JT, Bowtell DD, Weissman BE, Trent JM, Gilks CB (2016) Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type. J Pathol. 238(3):389–400. https://doi.org/10.1002/path.4633

    Article  CAS  PubMed  Google Scholar 

  38. Weissman B, Tischkowitz M, Huang S, Banerjee S, Hague J, Hendricks WPD, Huntsman DG, Lang JD, Orlando KA, Oza AM, Pautier P, Ray-Coquard I, Trent JM, Witcher M, Witkowski L, McCluggage WG, Levine DA, Foulkes WD (2020) Small-Cell Carcinoma of the Ovary, Hypercalcemic Type-Genetics, New Treatment Targets, and Current Management Guidelines. Clin Cancer Res. 26(15):3908–3917. https://doi.org/10.1158/1078-0432.CCR-19-3797

    Article  PubMed  PubMed Central  Google Scholar 

  39. Palmieri G, Cossu A, Casula M, Paliogiannis P, Tanda F, Palomba G, Sini MC, Pisano M, Doneddu V (2017) Female Adnexal Tumors of Probable Wolffian Origin (FATWO): A Case Series With Next-Generation Sequencing Mutation Analysis. Int J Gynecol Pathol. 36(6):575–581. https://doi.org/10.1097/PGP.0000000000000368

    Article  PubMed  Google Scholar 

  40. Howitt B, Mirkovic J, Dong F, Sholl LM, Garcia E, Lindeman N, MacConaill L, Crum CP, Nucci MR, McCluggage WG (2019) Targeted Genomic Profiling of Female Adnexal Tumors of Probable Wolffian Origin (FATWO). Int J Gynecol Pathol. 38(6):543–551. https://doi.org/10.1097/PGP.0000000000000545

    Article  CAS  PubMed  Google Scholar 

  41. Pfeifer J, Amador-Ortiz C, Roma AA, Huettner PC, Becker N (2011) JAZF1 and JJAZ1 gene fusion in primary extrauterine endometrial stromal sarcoma. Hum Pathol. 42(7):939–46. https://doi.org/10.1016/j.humpath.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  42. Antonescu C, Dermawan JK, Dashti N, Chiang S, Turashvili G, Dickson BC, Ellenson LH, Kirchner M, Stenzinger A, Mechtersheimer G, Agaimy A (2023) Expanding the molecular spectrum of gene fusions in endometrial stromal sarcoma: Novel subunits of the chromatin remodeling complexes PRC2 and NuA4/TIP60 as alternative fusion partners. Genes Chromosom. Cancer. 62(3):152–160. https://doi.org/10.1002/gcc.23109

    Article  CAS  PubMed  Google Scholar 

  43. Enomoto T, Tamura R, Nakaoka H, Yoshihara K, Mori Y, Yachida N, Nishikawa N, Motoyama T, Okuda S, Inoue I (2018) Novel MXD4-NUTM1 fusion transcript identified in primary ovarian undifferentiated small round cell sarcoma. Genes Chromosom. Cancer. 57(11):557–563. https://doi.org/10.1002/gcc.22668

    Article  CAS  PubMed  Google Scholar 

  44. Schoolmeester J, Fang H, Langstraat CL, Visscher DW, Folpe AL (2018) Epithelioid Inflammatory Myofibroblastic Sarcoma of the Ovary With RANB2-ALK Fusion: Report of a Case. Int J Gynecol Pathol. 37(5):468–472. https://doi.org/10.1097/PGP.0000000000000431

    Article  PubMed  Google Scholar 

  45. Trecourt A, Macagno N, Ngo C, Philip CA, Lopez J, Ferreira J, Alves-Vale C, Ray-Coquard I, Genestie C, Agaimy A, Devouassoux-Shisheboran M (2023) CREB fusion-associated epithelioid mesenchymal neoplasms of the female adnexa: three cases documenting a novel location of an emerging entity and further highlighting an ambiguous misleading immunophenotype. Virchows Arch 482(6):967–974. https://doi.org/10.1007/s00428-023-03546-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. WHO Classification of Tumours Editorial Board (2020) Female genital tumours. In: WHO classification of tumours, 5th edn, vol 4. International Agency for Research, Lyon.  http://publications.iarc.fr/592

  47. Ronnett B, Elishaev E, Gilks CB, Miller D, Srodon M, Kurman RJ (2005) Synchronous and metachronous endocervical and ovarian neoplasms: evidence supporting interpretation of the ovarian neoplasms as metastatic endocervical adenocarcinomas simulating primary ovarian surface epithelial neoplasms. Am J Surg Pathol. 29(3):281–94. https://doi.org/10.1097/01.pas.0000152136.81771.12

    Article  PubMed  Google Scholar 

  48. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  PubMed  Google Scholar 

  49. Talhouk A et al (2015) A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer 113(2):299–310. https://doi.org/10.1038/bjc.2015.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. The Cancer Genome Atlas Research Network (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497(7447):67–73. https://doi.org/10.1038/nature12113

    Article  CAS  Google Scholar 

  51. Azueta A, Gatius S, Matias-Guiu X (2010) Endometrioid carcinoma of the endometrium: Pathologic and molecular features. Semin. Diagn. Pathol. 27(4):226–40. https://doi.org/10.1053/j.semdp.2010.09.001

    Article  PubMed  Google Scholar 

  52. Matias-Guiu X, Davidson B (2014) Prognostic biomarkers in endometrial and ovarian carcinoma. Virchows Archiv 464(3):315–31. https://doi.org/10.1007/s00428-013-1509-y

    Article  CAS  PubMed  Google Scholar 

  53. Matias-Guiu X, Prat J (2013) Molecular pathology of endometrial carcinoma. Histopathology 62(1):111–23. https://doi.org/10.1111/his.12053

    Article  PubMed  Google Scholar 

  54. Bussaglia E, Del Rio E, Matias-Guiu X, Prat J (2000) PTEN mutations in endometrial carcinomas: A molecular and clinicopathologic analysis of 38 cases. Hum. Pathol 31(3):312–7. https://doi.org/10.1016/s0046-8177(00)80244-0

    Article  CAS  PubMed  Google Scholar 

  55. Lagarda H, Catasus L, Arguelles R, Matias-Guiu X, Prat J (2001) K-ras mutations in endometrial carcinomas with microsatellite instability. J. Pathol. 193(2):193–9. https://doi.org/10.1002/1096-9896(2000)9999:9999%3c::AID-PATH769%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  56. Machin P, Catasus L, Pons C, Munoz J, Matias-Guiu X, Prat J (2002) CTNNB1 mutations and beta-catenin expression in endometrial carcinomas. Hum Pathol 33(2):206–12. https://doi.org/10.1053/hupa.2002.30723

    Article  CAS  PubMed  Google Scholar 

  57. Concin N et al (2021) ESGO/ESTRO/ESP Guidelines for the management of patients with endometrial carcinoma. Radiother Oncol 154:327–353. https://doi.org/10.1016/j.radonc.2020.11.018

    Article  PubMed  Google Scholar 

  58. Frey MelissaK, Kahn Ryan M, Gordhandas Sushmita, Maddy Brandon Paul, Nelson Becky Baltich, Askin Gulce, Christos Paul J, Caputo Thomas A, Chapman-Davis Eloise, Holcomb Kevin (2019) Universal Endometrial Cancer Tumor Typing: How Much Has Immunohistochemistry, Microsatellite Instability, and MLH1 Methylation Improved the Diagnosis of Lynch Syndrome Across the Population? Cancer 125(18):3172–3183. https://doi.org/10.1002/cncr.32203

    Article  CAS  PubMed  Google Scholar 

  59. Turashvili G, Mrkonjic M (2022) EPM2AIP1 Immunohistochemistry Can Be Used as Surrogate Testing for MLH1 Promoter Methylation in Endometrial Cancer. Am J Surg Pathol. 46(3):376–382. https://doi.org/10.1097/PAS.0000000000001832

    Article  PubMed  Google Scholar 

  60. Manning-Geist BL et al (2021) Diagnosis and management of an endometrial cancer patient with Cowden syndrome. Gynecol Oncol 163(1):14–21. https://doi.org/10.1016/j.ygyno.2021.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mendelsohn J, Howley PM, Israel MA, Gray JW, Thompson CB (2008) The molecular basis of cancer. Elsevier Inc. https://doi.org/10.1016/B978-1-4160-3703-3.X5001-7

  62. Yeramian A et al (2013) Endometrial carcinoma: Molecular alterations involved in tumor development and progression. Oncogene. 32(4):403–13. https://doi.org/10.1038/onc.2012.76

    Article  CAS  PubMed  Google Scholar 

  63. Megino-Luque C et al (2022) ARID1A-deficient cells require HDAC6 for progression of endometrial carcinoma. Mol. Oncol 16(11):2235–2259. https://doi.org/10.1002/1878-0261.13193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gatius S, Matias-Guiu X (2016) Practical issues in the diagnosis of serous carcinoma of the endometrium. Modern Pathology. 1:S45-58. https://doi.org/10.1038/modpathol.2015.141

    Article  CAS  Google Scholar 

  65. Woods DB, Vousden KH (2001) Regulation of p53 function. Exp Cell Res 264(1):56–66. https://doi.org/10.1006/excr.2000.5141

    Article  CAS  PubMed  Google Scholar 

  66. Sherman ME, Bur ME, Kurman RJ (1995) p53 in endometrial cancer and its putative precursors: Evidence for diverse pathways of tumorigenesis. Hum. Pathol 26(11):1268–74. https://doi.org/10.1016/0046-8177(95)90204-x

    Article  CAS  PubMed  Google Scholar 

  67. Llobet D et al (2009) Molecular pathology of endometrial carcinoma: Practical aspects from the diagnostic and therapeutic viewpoints. Journal of Clinical Pathology. 62(9):777–85. https://doi.org/10.1136/jcp.2008.056101

    Article  CAS  PubMed  Google Scholar 

  68. Mishra R, Hanker AB, Garrett JT (2017) Genomic alterations of ERBB receptors in cancer: clinical implications. Oncotarget 8(69):114371–114392. https://doi.org/10.18632/oncotarget.22825

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chiesa-Vottero AG, Malpica A, Deavers MT, Broaddus R, Nuovo GJ, Silva EG (2007) Immunohistochemical overexpression of p16 and p53 in uterine serous carcinoma and ovarian high-grade serous carcinoma. Int J Gynecol Pathol 26(3):328–333. https://doi.org/10.1097/01.pgp.0000235065.31301.3e

  70. Yemelyanova A, Ji H, Shih IM, Wang TL, Wu LSF, Ronnett BM (2009) Utility of p16 expression for distinction of uterine serous carcinomas from endometrial endometrioid and endocervical adenocarcinomas: Immunohistochemical analysis of 201 cases. Am. J. Surg. Pathol. 33(10):1504–14. https://doi.org/10.1097/PAS.0b013e3181ac35f5

    Article  PubMed  Google Scholar 

  71. Tafe LJ, Garg K, Chew I, Tornos C, Soslow RA (2010) Endometrial and ovarian carcinomas with undifferentiated components: Clinically aggressive and frequently underrecognized neoplasms. Mod. Pathol. 23(6):781–9. https://doi.org/10.1038/modpathol.2010.41

    Article  CAS  PubMed  Google Scholar 

  72. Lee C, Tessier-Cloutier B, Coatham M, Carey M, Nelson GS, Hamilton S, Lum A, Soslow RA, Stewart CJ, Postovit LM, Köbel M (2021) SWI/SNF-deficiency defines highly aggressive undifferentiated endometrial carcinoma. J Pathol Clin Res 7(2):144–153. https://doi.org/10.1002/cjp2.188

    Article  CAS  PubMed  Google Scholar 

  73. RuhulQuddus M, Sung CJ, Zhang Cunxian, Dwayne Lawrence W (2010) Minor serous and clear cell components adversely affect prognosis in mixed-type endometrial carcinomas: A clinicopathologic study of 36 stage-I cases. Reprod. Sci. 17(7):673–8. https://doi.org/10.1177/1933719110368433

    Article  Google Scholar 

  74. Moreno-Bueno G, Mota A, Oltra SS, Selenica P, Moiola CP, Casas-Arozamena C, López-Gil C, Diaz E, Gatius S, Ruiz-Miro M, Calvo A, Rojo-Sebastián A, Hurtado P, Piñeiro R, Colas E, Gil-Moreno A, Reis-Filho JS, Muinelo-Romay L, Abal M, Matias-Guiu X, Weigelt B (2022) Intratumor genetic heterogeneity and clonal evolution to decode endometrial cancer progression. Oncogene. 41(13):1835–1850. https://doi.org/10.1038/s41388-022-02221-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Palacios J, Castilla MÁ, Moreno-Bueno G, Romero-Pérez L, Van De Vijver K, Biscuola M, López-García MÁ, Prat J, Matías-Guiu X, Cano A, Oliva E (2011) Micro-RNA signature of the epithelial-mesenchymal transition in endometrial carcinosarcoma. J Pathol. 223(1):72–80. https://doi.org/10.1002/path.2802

    Article  CAS  PubMed  Google Scholar 

  76. van Hoeven KH, Hudock JA, Woodruff JM, Suhrland MJ (1995) Small cell neuroendocrine carcinoma of the endometrium. Int J Gynecol Pathol 14(1):21–29. https://doi.org/10.1097/00004347-199501000-00005

    Article  PubMed  Google Scholar 

  77. Deodhar KK, Kerkar Ra, Suryawanshi P, Menon H, Menon S (2011) Large cell neuroendocrine carcinoma of the endometrium: an extremely uncommon diagnosis, but worth the efforts. J. Cancer Res. Ther. 7(2):211–3. https://doi.org/10.4103/0973-1482.82942

    Article  PubMed  Google Scholar 

  78. Hoang L, Pors J, Segura S, Chiu DS, Almadani N, Ren H, Fix DJ, Howitt BE, Kolin D, McCluggage WG, Mirkovic J, Gilks B, Park KJ (2021) Clinicopathologic Characteristics of Mesonephric Adenocarcinomas and Mesonephric-like Adenocarcinomas in the Gynecologic Tract: A Multi-institutional Study. Am J Surg Pathol. 45(4):498–506

    Article  PubMed  PubMed Central  Google Scholar 

  79. Park K, da Silva EM, Fix DJ, Sebastiao APM, Selenica P, Ferrando L, Kim SH, Stylianou A, Da Cruz Paula A, Pareja F, Smith ES, Zehir A, Konner JA, Cadoo K, Reis-Filho JS, Abu-Rustum NR, Mueller JJ, Weigelt B (2021) Mesonephric and mesonephric-like carcinomas of the female genital tract: molecular characterization including cases with mixed histology and matched metastases. Mod Pathol. 34(8):1570–1587. https://doi.org/10.1038/s41379-021-00799-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McCluggage W, Wong RW, Ralte A, Grondin K, Talia KL (2020) Endometrial Gastric (Gastrointestinal)-type Mucinous Lesions: Report of a Series Illustrating the Spectrum of Benign and Malignant Lesions. Am J Surg Pathol. 44(3):406–419. https://doi.org/10.1097/PAS.0000000000001381

    Article  PubMed  Google Scholar 

  81. Bosse T, León-Castillo A, Gilvazquez E, Nout R, Smit VT, McAlpine JN, McConechy M, Kommoss S, Brucker SY, Carlson JW, Epstein E, Rau TT, Soslow RA, Ganesan R, Matias-Guiu X, Oliva E, Harrison BT, Church DN, Gilks CB (2020) Clinicopathological and molecular characterisation of ‘multiple-classifier’ endometrial carcinomas. J Pathol 250(3):312–322

    Article  PubMed  PubMed Central  Google Scholar 

  82. Concin N, Berek JS, Matias-Guiu X, Creutzberg C, Fotopoulou C, Gaffney D, Kehoe S, Lindemann K, Mutch D (2023) Endometrial Cancer Staging Subcommittee, FIGO Women’s Cancer Committee. FIGO staging of endometrial cancer: 2023. Int J Gynaecol Obs. 34(5):e85. https://doi.org/10.3802/jgo.2023.34.e85

    Article  Google Scholar 

  83. Bosse T et al (2018) Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups. Am. J. Surg. Pathol. 42(5):561–568. https://doi.org/10.1097/PAS.0000000000001020

    Article  PubMed  PubMed Central  Google Scholar 

  84. León-Castillo A et al (2020) Interpretation of somatic POLE mutations in endometrial carcinoma. J. Pathol. 250(3):323–335. https://doi.org/10.1002/path.5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Talhouk A, McAlpine JN, Chiu DS, Nout RA, Church DN, Schmidt P, Lam S, Leung S, Bellone S, Wong A, Brucker SY, Lee CH, Clarke BA, Huntsman DG, Bernardini MQ, Ngeow J, Santin AD, Goodfellow P, Levine DA, Köbel M, Kommoss S, Bosse T, Gilks CB (2021) Evaluation of treatment effects in patients with endometrial cancer and POLE mutations: An individual patient data meta-analysis. Cancer. 127(14):2409–2422

    Article  PubMed  Google Scholar 

  86. Cosgrove C, Riedinger CJ, Brown M, Haight PJ, Backes FJ, Cohn DE, Goodfellow PJ (2023) Epigenetic MMR defect identifies a risk group not accounted for through traditional risk stratification algorithms in endometrial cancer. Front Oncol. 13:1147657. https://doi.org/10.3389/fonc.2023.1147657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Terada Y, Kaneko E, Sato N, Sugawara T, Noto A, Takahashi K, Makino K (2021) MLH1 promoter hypermethylation predicts poorer prognosis in mismatch repair deficiency endometrial carcinomas. J Gynecol Oncol. 32(6):e79

    Article  PubMed  PubMed Central  Google Scholar 

  88. Santin A, Bellone S, Roque DM, Siegel ER, Buza N, Hui P, Bonazzoli E, Guglielmi A, Zammataro L, Nagarkatti N, Zaidi S, Lee J, Silasi DA, Huang GS, Andikyan V, Damast S, Clark M, Azodi M, Schwartz PE, Tymon-Rosario JR, Harold JA, Mauricio D, Zeybek B, Menderes G, Yong Al (2022) A phase 2 evaluation of pembrolizumab for recurrent Lynch-like versus sporadic endometrial cancers with microsatellite instability. Cancer. 128(6):1206–1218

    Article  PubMed  Google Scholar 

  89. Santin A, Chow RD, Michaels T, Bellone S, Hartwich TMP, Bonazzoli E, Iwasaki A, Song E (2023) Distinct Mechanisms of Mismatch-Repair Deficiency Delineate Two Modes of Response to Anti-PD-1 Immunotherapy in Endometrial Carcinoma. Cancer Discov. 13(2):312–331

    Article  PubMed  PubMed Central  Google Scholar 

  90. Soslow R, Momeni-Boroujeni A, Nguyen B, Vanderbilt CM, Ladanyi M, Abu-Rustum NR, Aghajanian C, Ellenson LH, Weigelt B (2022) Genomic landscape of endometrial carcinomas of no specific molecular profile. Mod Pathol. 35(9):1269–1278

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bosse T, Vermij L, Jobsen JJ, León-Castillo A, Brinkhuis M, Roothaan S, Powell ME, de Boer SM, Khaw P, Mileshkin LR, Fyles A, Leary A, Genestie C, Jürgenliemk-Schulz IM, Crosbie EJ, Mackay HJ, Nijman HW, Nout RA, Smit VTHBM, Creutzberg CL, Horeweg N, Ver Bosse TP- (2023) TransPORTEC Consortium. Prognostic refinement of NSMP high-risk endometrial cancers using oestrogen receptor immunohistochemistry. Br J Cancer. 128(7):1360–1368

    Article  PubMed  PubMed Central  Google Scholar 

  92. McAlpine J, Jamieson A, Huvila J, Chiu D, Thompson EF, Scott S, Salvador S, Vicus D, Helpman L, Gotlieb W, Kean S, Samouelian V, Köbel M, Kinloch M, Parra-Harran C, Offman S, Grondin K, Irving J, Lum A, Senz J, Leung S, McConechy MK, Plante M, Kommoss S, Huntsman DG (2023) Grade and Estrogen Receptor Expression Identify a Subset of No Specific Molecular Profile Endometrial Carcinomas at a Very Low Risk of Disease-Specific Death. Mod Pathol. 36(4):100085

    Article  PubMed  Google Scholar 

  93. Köbel M, Brett MA, Atenafu EG, Singh N, Ghatage P, Clarke BA, Nelson GS, Bernardini MQ (2021) Equivalent Survival of p53 Mutated Endometrial Endometrioid Carcinoma Grade 3 and Endometrial Serous Carcinoma. Int J Gynecol Pathol. 40(2):116–123

    Article  PubMed  Google Scholar 

  94. Broaddus R, Ring KL, Bruegl AS, Allen BA, Elkin EP, Singh N, Hartman AR, Daniels MS (2016) Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Mod Pathol. 29(11):1381–1389. https://doi.org/10.1038/modpathol.2016.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bosse THG, de Jonge MM, Ritterhouse LL, de Kroon CD, Vreeswijk MPG, Segal JP, Puranik R, Hollema H, Rookus MA, van Asperen CJ, van Leeuwen FE, Smit VTHBM, Howitt BE (2019) Germline BRCA-Associated Endometrial Carcinoma Is a Distinct Clinicopathologic Entity. Clin Cancer Res. 25(24):7517–7526. https://doi.org/10.1158/1078-0432.CCR-19-0848

    Article  PubMed  Google Scholar 

  96. Sood A, Siedel JH, Ring KL, Hu W, Dood RL, Wang Y, Baggerly K, Darcy KM, Conrads TP, Gallagher S, Tshiaba P, Neff C, Timms KM, Mangala S, Westin SN, Broaddus R, Lopez-Berestein G, Lu KH, Coleman RL, Maxwell GL (2021) Clinical significance of homologous recombination deficiency score testing in endometrial Cancer. Gynecol Oncol. 160(3):777–785. https://doi.org/10.1016/j.ygyno.2020.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weigelt B, Ashley CW, Da Cruz Paula A, Kumar R, Mandelker D, Pei X, Riaz N, Reis-Filho JS (2019) Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression. Gynecol Oncol. 152(1):11–19. https://doi.org/10.1016/j.ygyno.2018.10.032

    Article  CAS  PubMed  Google Scholar 

  98. Bosse T, de Jonge MM, Auguste A, van Wijk LM, Schouten PC, Meijers M, Ter Haar NT, Smit VTHBM, Nout RA, Glaire MA, Church DN, Vrieling H, Job B, Boursin Y, de Kroon CD, Rouleau E, Leary A, Vreeswijk MPG (2019) Frequent Homologous Recombination Deficiency in High-grade Endometrial Carcinomas. Clin Cancer Res. 25(3):1087–1097. https://doi.org/10.1158/1078-0432.CCR-18-1443

    Article  PubMed  Google Scholar 

  99. Hedenfalk I, Jönsson JM, Bååth M, Björnheden I, Sahin ID, Måsbäck A (2021) Homologous Recombination Repair Mechanisms in Serous Endometrial Cancer. Cancers (Basel). 13(2):254. https://doi.org/10.3390/cancers13020254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Buza N, Euscher ED, Matias-Guiu X, McHenry A, Oliva E, Ordulu Z, Parra-Herran C, Rottmann D, Turner BM, Wong S, Hui P (2021) Reproducibility of scoring criteria for HER2 immunohistochemistry in endometrial serous carcinoma: a multi-institutional interobserver agreement study. Mod Pathol 34(6):1194–1202. https://doi.org/10.1038/s41379-021-00746-5

  101. Matias-Guiu X, Cuevas D, Velasco A, Vaquero M, Santacana M, Gatius S, Eritja N, Estaran E (2020) Intratumour heterogeneity in endometrial serous carcinoma assessed by targeted sequencing and multiplex ligation-dependent probe amplification: a descriptive study. Histopathol. 76(3):447–460

    Article  Google Scholar 

Download references

Funding

The work has been done with support of Fundación Científica de la Asociación Española contra el Cáncer (GCTRA1804MATI), Fundació La Marató TV3. (201919–31), and Generalitat de Catalunya (2021 SGR 0093).

Author information

Authors and Affiliations

Authors

Contributions

Ben Davidson wrote the manuscript part discussing adnexal tumors.

Sonia Gatius and Xavier Matias-Guiu wrote the manuscript part discussing endometrial tumors.

Corresponding authors

Correspondence to Sonia Gatius or Ben Davidson.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xavier Matias Guiu and Ben Davidson are co-senior authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatius, S., Matias Guiu, X. & Davidson, B. Molecular features for timely cancer diagnosis and treatment – tumors of the ovary, fallopian tube and endometrium. Virchows Arch 484, 339–351 (2024). https://doi.org/10.1007/s00428-023-03710-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-023-03710-7

Keywords

Navigation